На главную

Статья по теме: Полимеров характеризуется

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Текучесть полимеров характеризуется следующими отличительными свойствами: 1) высокой вязкостью в связи с большой молекулярной массой полимеров; 2) особой ролью напряжения, обеспечивающего снижение вязкости в процессах переработки; 3) независимостью температурного коэффициента вязкости от многих факторов, в том числе от молекулярной массы и напряжения и 4) особой ролью высокоэластической деформации, развивающейся в вязком потоке полимера.[9, С.117]

Полидисперсность полимеров характеризуется кривыми моле-кулярно-массового распределения. Интегральная функция молеку-лярно-массового распределения определяется выражением[5, С.177]

Аморфное состояние полимеров характеризуется жидкопо-добной структурой разной степени замороженности. Никакого специального порядка в аморфных полимерах нет (во всяком случае, на масштабах более 2 нм). Но отсутствие порядка вовсе не означает однородность, в определенной мере существующую, скажем, в оптических стеклах. Аморфные полимеры — это структурно-неоднородные системы.[8, С.89]

Кристаллическое состояние полимеров характеризуется дальним порядком в расположении структурных элементов. Размеры областей упорядоченности в кристаллическом полимере оказываются значительно больше расстояния между ближайшими структурными элементами. Необходимым условием кристаллизации полимеров является регулярность строения их цепей. При кристаллизации происходит скачкообразный переход от присущей жидкостям структуры, характеризующейся ближним порядком, к структуре, характеризующейся дальним порядком. Этот переход сопровождается уменьшением удельного объема, теплоемкости, возрастанием модуля упругости и т. д. [226]. Кристаллизация полимеров часто не происходит полностью. Наряду с кристалличе-[11, С.69]

Ориентированное состояние полимеров характеризуется повышенной когезионной прочностью в направлении ориентации. Напр., лубяные волокна (лен, пенька), макромолекулы целлюлозы в к-рых имеют высокую степень ориентации, в 2—3 раза прочнее хлопковых, где параллелизация цепей значительно ниже. Химич. волокна после многократного растяжения упрочняются в 3—4 раза. В отдельных случаях возможно 5—6-кратное увеличение прочности вдоль оси ориентации. То же наблюдается при ориентировании пленок полимерных. В процессе вытяжки или под влиянием твердой поверхности хаотически свернутые или спиралевидные цепи выпрямляются. Происходит их сближение и уплотнение упаковки; возникают дополнительные контакты между ними, вследствие чего повышается К. Кристаллическое состояние полимеров (наиболее упорядоченное состояние) отвечает наиболее высокой К.[20, С.521]

Аморфное фазовое состояние полимеров характеризуется отсутствием дальнего порядка, флуктуационным ближним порядком в расположении молекул, устойчивость которого зависит от агрегатного состояния вещества, изотропией формы и физических свойств (т. е. их независимостью от направления), а также отсутствием четко выраженной температуры точки плавления. Для низкомолекулярных тел аморфному фазовому состоянию отвечает только жидкое агрегатное состояние, поскольку в твердом агрегатном состоянии они характеризуются трехмерным дальним 'Порядком, т. е. образуют правильную кристаллическую решетку. Исключение составляют природные и синтетические смолы (природные смолы — канифоль, янтарь; синтетические—фенолформальдегидные смолы с молекулярной массой 700—1000 и др.), а также обычное силикатное стекло. Для смол и стекла переход из твердого агрегатного состояния в жидкое и обратный переход из жидкого в твердое протекает плавно. При этом изменений в структуре не происходит, так как в твердых и жидких стеклах наблюдается только ближний порядок расположения молекул. Такой постепенный переход из одного агрегатного состояния в другое без изменений в структуре, специфичный для аморфного фазового состояния, называют стеклованием, а аморфные твердые тела стеклообразными, или стеклами.[15, С.73]

Ориентированно/; состояние полимеров характеризуется повышенной когезпонной прочностью в направлении ориентации. Напр.. лубяные волокна (лен, пенька), макромолекулы целлюлозы в к-рых имеют высокую степень ориентации, в 2— 3 раза прочнее хлопковых, где параллелпзацня цепей значительно ниже. Хтшич. волокна после многократного растяжения упрочняются в 3—4 раза. В отдельных случаях возможно 5—б-кратпое увеличение прочности вдоль оси ориентации. То жо наблюдается при ориентировании пленок полимерных. В процессе вытяжки или под влиянием твердой поверхности хаотически свернутые пли спиралевидные цепи выпрямляются. Происходит их сближение и уплотнение упаковки; возникают дополнительные контакты между ними, вследствие чего повышается К. Кристаллическое состояние полимеров (наиболее упорядоченное состояние) отвечает наиболее высокой К.[18, С.524]

Аморфное фазовое состояние полимеров характеризуется отсутствием дальнего порядка, флуктуационным ближним порядком в расположении молекул, устойчивость которого зависит от агрегатного состояния вещества, изотропией формы и физических свойств (т. е. их независимостью от направления), а также отсутствием четко выраженной температуры точки плавления. Для низкомолекулярных тел аморфному фазовому состоянию отвечает только жидкое агрегатное состояние, поскольку в твердом агрегатном состоянии они характеризуются трехмерным дальним порядком, т. е. образуют правильную кристаллическую решетку. Исключение составляют природные и синтетические смолы (природные смолы — канифоль, янтарь; синтетические — фенолформальдегидиые смолы с молекулярной массой 700—1000 и др.), а также обычное силикатное стекло. Для смол и стекла переход из твердого агрегатного состояния в жидкое и обратный переход из жидкого в твердое протекает плавно. При этом изменений в структуре не происходит, так как в твердых и жидких стеклах наблюдается только ближний порядок расположения молекул. Такой постепенный переход из одного агрегатного состояния в другое без изменений в структуре, специфичный для аморфного фазового состояния, называют стеклованием, а аморфные твердые тела стеклообразными, или стеклами.[19, С.73]

Таким образом, процесс окисления полимеров характеризуется признаками цепных радикальных реакций. Так, на кинетической кривой присоединения кислорода к полимеру имеется индукционный период, величина которого может быть увеличена в присутствии ингибитора (рис. 112). Окисление ускоряется также при освещении, причем после удаления источника света имеется так называемый «постэффект» действия света (рис. 113).[15, С.193]

Таким образом, процесс окисления полимеров характеризуется признаками цепных радикальных реакций. Так, на кинетической кривой присоединения кислорода к полимеру имеется индукционный период, величина которого может быть увеличена в присутствии ингибитора (рис. 112). Окисление ускоряется также при освещении, причем после удаления источника света имеется так называемый «постэффект» действия света (рис. 113),[19, С.193]

Надмолекулярная структура расплавов полимеров характеризуется ближним порядком, свойственным аморфным телам. Но вследствие более интенсивного теплового движения в вяз-котекучем состоянии по сравнению с внсокоэластнческим упорядоченность-структуры (доменов, кластеров) ниже.[7, С.253]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Бартенев Г.М. Физика полимеров, 1990, 433 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
13. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
14. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
15. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
16. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
17. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
18. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
19. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную