На главную

Статья по теме: Температуры поверхности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для определения температуры поверхности слоя составим вначале уравнение теплового баланса для тонкого слоя, отрезанного от пробки двумя, плоскостями, перпендикулярными оси винтового канала (рис. VIII. 24). Тепло, выделяющееся на поверхности корпуса, разделяется на два потока: один — это тепло, идущее на разогрев пробки, другой — тепло, отводимое в корпус экструдера. Расположим систему прямоугольных координат на поверхности пробки, так, чтобы ось у была направлена внутрь пробки. Тогда интенсивность тепловыделений равна:[7, С.292]

Кокс и Макоско [19] сообщили экспериментальные данные по измерению температуры поверхности расплава на выходе из капилляра при помощи инфракрасного пирометра, который регистрирует тепло, излучаемое поверхностью расплава. В их работе сообщается[1, С.468]

Пример 9.1. Полуограниченное твердое тело с постоянными теплофизическими свойствами и скачкообразным изменением температуры поверхности (точное решение)[1, С.259]

Пример 9.2. Полуограниченное твердое тело с переменными теплофизическими свойствами и скачкообразным изменением температуры поверхности (приближенное аналитическое решение)[1, С.261]

Пример 9.3. Плавление полуограниченного твердого тела с постоянными тепло-физическими свойствами и скачкообразным изменением температуры поверхности — задача Стефана—Неймана[1, С.263]

Предположим, что температурный профиль в каждой фазе имеет форму температурного профиля, полученного в Примере 9.1 для полубесконечного твердого тела со скачкообразным изменением температуры поверхности. Тогда получим следующие температурные профили для расплава и твердой фазы соответственно:[1, С.264]

Они удовлетворяют граничным условиям (9.3-26а) и (9.3-286). В уравнениях (9.3-30) и (9.3-31) erfc (s) = 1 — erf (s). Оба уравнения должны соответствовать граничному условию, которое определяет равенство температуры поверхности раздела температуре плавления:[1, С.264]

Температура смешения. Температура смешения на вальцах обычно характеризуется температурой поверхности валков и в большистве случаев не превышает 60—65 °С. Температура резиновой смеси в конце процесса смешения бывает выше температуры поверхности валков. При изготовлении резиновых смесей на основе наирита температура поверхности валков должна быть значительно ниже, в противном случае резиновая смесь сильно прилипает к поверхности валка, так что срезать ее становится весьма трудно, а иногда и невозможно. Сильно прилипают к го-рячим валкам также и пластичные смеси из натурального каучука. Изготовление резиновых смесей на основе бутилкаучука, наоборот, целесообразно проводить при повышенной температуре порядка 75—85 °С, так как при этом эластичность каучука уменьшается, пластичность увеличивается и обработка его облегчается. Такая температура смешения не опасна в отношении преждевременной вулканизации, к которой бутилкаучук не склонен зследствие своей низкой непредельности. При обработке жестких,[3, С.260]

Решение этой системы уравнений можно получить только численным методом. Полученные результаты имеют физический смысл на участке оси z до момента начала кристаллизации, когда тепловыделение за счет экзотермического эффекта кристаллизации снижает скорость охлаждения расплава. Это показано на рис. 15.2. Здесь приведены результаты измерения температуры поверхности волокна в процессе вытяжки из расплава в зависимости от расстояния z. В результате кристаллизации внутренних слоев по мере увеличения расстояния от фильеры температура поверхности волокна может даже повышаться.[1, С.563]

Листование является одним из способов формования резиновой смеси. Формование усложняется тем, что резиновая смесь даже в разогретом пластичном состоянии всегда сохраняет некоторую эластичность, что проявляется в эластическом восстановлении и усадке после прекращения действия деформирующих сил или при уменьшении их величины. Это затрудняет получение листа установленных размеров, так как величина эластического восстановления каждой смеси зависит от температуры и пластичности резиновой смеси, температуры поверхности валков вальцов, скорости хода каландра, состава резиновой смеси и условий последующего хранения полуфабриката.[3, С.279]

Отсюда следует, что изменение температуры элемента движущейся жидкой среды определяется суммой подведенного к элементу или отведенного от него тепла и интенсивности диссипативного разогрева внутри элемента. Из практических соображений в смесительных устройствах обычно поддерживают относительно невысокую температуру, чтобы избежать перегрева полимерного материала. С другой стороны, как показано в разд. 1 1 .6, для диспергирования в определенных зонах внутри смесителя необходимо поддерживать высокие напряжения сдвига. Из уравнения (11.3-18) видно, что для выполнения этого требования надо обеспечить интенсивный отвод тепла при смешении. Для полимерных систем, характеризующихся низкой теплопроводностью, это не простая задача. Конструкция смесителя должна обеспечивать не только тщательный контроль температуры поверхности, но также и максимально возможное отношение площади поверхности смесителя к его объему.[1, С.382]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
5. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
6. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
7. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
8. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную