На главную

Статья по теме: Вследствие рекомбинации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Первичные свободные радикалы чрезвычайно неустойчивы, они существуют только при очень низкой температуре и гибнут вследствие рекомбинации. При повышении температуры они приобретают известную подвижность и либо в присутствии О2 образуют перекисные радикалы, либо изомермзуютея в более устойчивую форму, либо участвуют в межцеп-IHO.M обмене, например:[7, С.65]

Когда это возможно, следует учесть четвертое замечание, а в величину концентрации радикалов ввести поправку, учитывающую потери последних вследствие рекомбинации или других реакций с учетом вторичных радикалов. В случае волокон ПА-6 [5, 11, 17, 18] уменьшение числа радикалов обусловлено реакцией рекомбинации радикалов второго порядка, причем константа скорости реакции зависит от вида, положения и подвижности радикалов (см. этот же раздел ниже).[2, С.205]

При достаточно энергичных механических воздействиях на полимеры (экструзия, вальцевание, действие ультразвуком, электрогидравлический удар и др.) происходит разрыв макромолекул с образованием активных осколков цепей (преимущественно радикальной природы). Поэтому если таким воздействиям подвергнуть смеси полимеров, то вследствие рекомбинации разнородных фрагментов макромолекул образуются блок-сополимеры:[3, С.66]

Радиационная стойкость сополимеров ТФХЭ — ВДФ сравнительно низка. Фторопласт-ЗМ выдерживает облучение дозой 0,24 МДж/кг (24 Мрад). Так как в молекулярных цепях одновременно присутствуют пергалогенированные звенья и метиле-новые группы, воздействие ионизирующего излучения вызывает как деструкцию, так и сшивание цепей сополимера [45, с. 105— 109]. Сшивание происходит вследствие рекомбинации полимерных радикалов, образующихся за счет разрыва связей —СН, —CF и —СС1 [54]. С увеличением содержания ВДФ эффектов-, ность сшивания и стойкость сополимера к радиации возрастают. Сополимер с содержанием 70% (мол.) ВДФ выдерживает облучение дозой 0,60 МДж/кг (60 Мрад), при этом разрушающее напряжение при растяжении, относительное удлинение при разрыве и твердость снижаются на 36,4; 14,8 и 10,8% соответственно [55, с. 303].[6, С.162]

Скорость реакции обрыва цепи весьма чувствительна к вязкости среды, и диффузионный контроль этой реакции становится заметным при вязкости реакционной массы, близкой к вязкости мономера. Однако гель-эффект обычно наблюдается при конверсиях не менее 10—15% (в случае проведения полимеризации в массе). Как показывают расчеты [22, с. 71], отсутствие самоускорения при малых глубинах превращения в основном связано с заметным уменьшением скорости инициирования уже при небольшой конверсии мономера. Это вызвано снижением константы эффективности инициирования f вследствие рекомбинации первичных радикалов (клеточный эффект). Так как скорость полимеризации прямо пропорциональна 1>ин/6о/2>. при одновременном уменьшении vm и ka происходит «компенсация» и скорость реакции сохраняет примерно постоянное значение. При достижении конверсии, соответствующих началу самоускорения, уменьшение f 'замедляется, тогда как k0 резко снижается. Это приводит к нарушению «компенсации», и скорость полимеризации возрастает.[5, С.17]

Естественно, что диспергирование в присутствии полимеров также приведет к получению подобных продуктов вследствие рекомбинации макрорадикалов деструктируемого полимера с активными центрами на поверхности частиц.[7, С.181]

Необходимо иметь ввиду, что если механические усилия прилагаются при температурах выше Тс полимера, то вследствие рекомбинации макрорадикалов может возрастать вероятность процесса разветвления макроцепей.[8, С.70]

При радикальной Д. п. в р-ре или в массе образуются сравнительно низкомолекулярные полимеры, так как в этих условиях очень велика вероятность обрыва цепи вследствие рекомбинации или диспропорциониро-вания радикалов. При полимеризации в водных эмульсиях, когда из-за топографич. особенностей процесса резко уменьшается вероятность обрыва цепи вследствие рекомбинационпых актов, образуются очень высокомолекулярные полиморы и возникает необходимость в регулировании мол. массы и молекулярно-массового распределения полимеров. В качестве регуляторов обычно применяют меркаптаны и нек-рые дитиосоеди-пения, участвующие в актах передачи цепи, напр.: R-CH2CH = CHCH2 + R,SH — >- R-CH,CH = CHCHS + R1S R-CH2CH = CHCH2 + H3C Г„/СН°[11, С.349]

При радикальной Д. п. в р-ре или в ^массе образуются сравнительно низкомолекулярные полимеры, так как в этих условиях очень велика вероятность обрыва цепи вследствие рекомбинации или диспропорциониро-вания радикалов. При полимеризации в водных эмульсиях, когда из-за топографич. особенностей процесса резко уменьшается вероятность обрыва цепи вследствие рекомбинационных актов, образуются очень высокомолекулярные полимеры и возникает необходимость в регулировании мол, массы и молекулярно-массового распределения полиморов. В качестве регуляторов обычно применяют меркаптаны и нек-рые дитиосоеди-нения, участвующие в актах передачи цепи, напр.:[12, С.346]

Прежние исследования, показавшие возможность ускорения роста клеток, прорастания семян и созревания плодов при механических воздействиях (ультраозвучивание), могут быть дополнены новыми данными, согласно которым механохимическая обработка нуклеиновых кислот, белков или полисахаридов вследствие рекомбинации, подобно обычным макромолекуляр-ным соединениям, приводит к образованию блок-сополимеров. Следовательно, при осторожном воздействии на организмы де-структивно-рекомбинационных процессов вследствие изменения нуклеиновых кислот создаются предпосылки для соответствующих мутаций наследственных свойств.[9, С.351]

М е х а н о х и м и ч е с к и и и радиационный синтезы. При -у-облучении или иод воздействием механич. напряжений при пластикации, вальцевании, замораживании и оттаивании р-ров и др. макромолекулы деструктируются с образованием активных осколков цепей, в основном радикального тина (см. Механическая деструкция, Радиационная деструкция). При подобной обработке смеси двух или более полимеров возможно получение П. с. вследствие рекомбинации двух макрорадикалов, несущих неспаренный электрон на конце и в середине цепи. Последние образуются в результате передачи цепи на полимер. Однако при у-облучении и механич. воздействиях деструктируются не только исходные, но и вновь образующиеся макромолекулы, а кроме передачи цепи на полимер (в результате чего и образуются макромолекулы с неспаренным электроном в середине цепи) и рекомбинации радикалов различных типов, возможно диспропорцио-нирование и рекомбинация макрорадикалов одного типа. Вследствие этого продукты обработки содержат, как правило, не только привитые, но и блоксополиморы, а также разветвленные и сшитые гомополимеры. Эффективность рассматриваемых методов синтеза П. с. зависит от совместимости исходных полимеров, однако большинство полимеров несовместимо друг с другом. При практич. применении этих методов П. с. обычно не выделяют из смеси образовавшихся продуктов, поскольку в пром-сти часто бывает необходимо добиться только того, чтобы получались материалы с воспроизводимыми составом и свойствами.[10, С.101]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
5. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
6. Пашин Ю.А. Фторопласты, 1978, 233 с.
7. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
8. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
9. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
10. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
11. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную