На главную

Статья по теме: Вторичные структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Наблюдаемые в случае полиакрилата цезия вторичные структуры (рис. 3, б) оказываются еще более развернутыми, чем для натриевой соли полиакриловой кислоты. Так же как и в случае полиакрилата натрия, структура образована из изогнутых длинных фибрилл, не проникающих друг в друга. Однако размеры фибрилл, участвующие в образовании вторичных структур полиакрилата цезия, меньше, чем для натриевых структур полиакриловой кислоты; величины поперечных размеров их находятся в пределах 40—80 А. Это уже не сильно изогнутые «червячки», а более длинные и выпрямленные ниточки. По-видимому, они также образованы аналогичным соединением молекулярных цепочек в пачки. Однако молекулярные цепочки в этом случае более выпрямлены и соединяются в меньшем числе. В среднем число[5, С.113]

При нанесении кипящего раствора полиэтилена на подложку, нагретую до 90°, возникают различные вторичные структуры полиэтилена (рис. 1, г). В центре снимка г расположены простейшие стуктурные элементы — пачки цепей, еще не собранные в складчатые структуры. Затем видны зародыши складчатых структур — полосы. Эти полосы являются проекциями плоскостей, растущих перпендикулярно к поверхности подложки. Если плоскости не развиваются, то возникают ленточные структуры. Одновременно на снимке г можно рассмотреть как зародыши сферолитов, так и единичные кристаллы (края снимка). Начиная со 100° и выше полиэтилен дает картину хаотично расположенных лент, состоящих из пачек (рис. 1, д).[5, С.144]

Оказалось, что фракции полиэтилена с мол. весом от 21 000 до 300 000 образуют в растворе одинаковые вторичные структуры в одном и том же интервале температур. При нанесении кипящего ксилольного раствора на подложку при комнатной температуре получаются кристаллы дендритного характера (рис. 1). Начиная с 40 и до 90° на подложке образуются пластинчатые кристаллы пирамидальной формы, хорошо известные в литературе [5]. На рис. 2 представлена типичная микрофотография, полученная для полиэтилена мол. веса 21 000 при 70°. На большой плоскости основания, имеющего ромбовидную форму, расположено много более мелких пирамидальных кристаллов. Отдельные слои, образующие соседние кристаллы, перекрываются, не мешая друг другу. На рис. 3 (мол. вес 21 000, температура подложки 90°) хорошо видно, что рост кристаллов идет до дислокационному механизму. На рис. 4 приведена микродифракция, снятая с участка монокристалла полиэтилена. Кристаллы получаются в фракционированном полиэтилене низкого давления мол. веса от 21 000 до 300 000 при температуре подложки от комнатной до 100°. Кроме того, интересно отметить, что изменение концентрации раствора полимера в пределах от 0,001 до 0,1% не сказывается на характере вторичных образований в зависимости от температуры. На рис. 5 (мол. вес 30 000, температура 90°) отчетливо видны кристаллы, полученные из 0,1%-ного ксилольного раствора. Эти кристаллы менее совершенны, чем возникшие в более разбавленном растворе (см. рис. 2). На микрофотографии можно рассмотреть, что утолщения и наросты располагаются чаще всего по краям плоскости основания. Таким образом, фракционированный полиэтилен с мол. весом до 300 000 при сравнительно низких температурах (до 100°) дает пластинчатые кристаллы. Очевидно, что регулярное строение и одинаковый размер молекулярных цепей значительно облегчают условия образования однородных структурных единиц, что ведет, в свою очередь, к быстрому упорядочению их в более высоко организованные структуры. Выше 100° возникают структуры, подобные структурам в нефракционированном полиэтилене при этой же температуре [1]. На снимках (рис. 6) появляются полосатые структуры и ленты. Возникшие кое-где плоскости часто образуют завихрения, подобные зародышам сферолитов. Это совпадает с данными Ли Ли-шен, Андреевой и Каргина [6], показавшими, что при 100° происходит резкое ослабление сил связи между отдельными лентами, образующими кристаллы. Начиная с мол. веса 300 000 и выше характер вторичных структур изменяется. При температуре подложки от комнатной до 90° наряду с пластинчатыми образованиями возникают хорошо сформированные спиралеобразные структуры. На рис. 7 дана микрофотография раствора полиэтилена низкого давления мол. веса 360 000 при 70°. Одновременно с пластинками хорошо видны типичные спирали. Легко можно рассмотреть, как утолщенные места спирали перерастают в плоскости. Местами: видны полосатые структуры. Возникшие спиралевидные образования довольно гибки (рис. 8; мол. вес 30 000, температура 90°).[5, С.150]

При анализе реограммы изменения вязкостных свойств, оцениваемых по нестандартным методикам на вискозиметре типа Муни, были отмечены развитые вторичные структуры у[2, С.39]

Полиакрилаты четвертичных аммониевых оснований (тетраметил- и триэтилфениламмония, рис. 3, в и 3, г соответственно) дают картину агрегации цепей, аналогичную полиакрилату цезия. Вторичные структуры, образованные соединением агрегатов цепей, представляют собой типичные фибриллярные структуры. Отдельные фибриллы исходя из размеров 40—90 А в поперечнике образованы параллельным соединением в пачки асимметричных молекулярных цепочек по 5—12 штук.[5, С.115]

Уравнение (1.2) в ряде случаев хорошо описывает изотермы адсорбции полимеров [142, 190]; оно иногда оказывается справедливым даже тогда, когда на поверхность адсорбента переходят не изолированные макромолекулы, а вторичные структуры. Коэффициент р, характеризующий адсорбируемость в уравнении (1.2), при адсорбции полимеров значительно выше, чем при адсорбции низкомолекулярных веществ.[4, С.22]

Отмечают [7], что большое влияние на свойства смесей и вул-канизатов на основе СКИ-3 оказывает содержание в н-их избыточной влажности (выше 0,1—0,2%). При повышении влажности до 0,5% каучук интенсивно деструктируется при (переработке, а затем может образовывать вторичные структуры, что повышает твердость и склонность смесей к подвулканизации, ухудшает распределение технического углерода и на 10—15% понижает прочность при растяжении вулканизатов.[1, С.183]

Для электронно-микроскопических исследований были взяты соли, оттитрованные до значения рН 6,5, что соответствует максимальному значению вязкости, а следовательно, и предельной асимметрии формы. ri»>- Электронно-микроскопические снимки полиакрилата натрия показаны на рис. 1, в, г и на рис. 3, а. Микрофотографии полиакрилата натрия уже не напоминают нам чистую полиакриловую кислоту или ее бариевую соль. Вторичные структуры полиакрилата натрия имеют совершенно иную форму и строение. Это — развернутая структура, элементами которой являются изогнутые, различной плотности и длины ниточки, это — типичная фибриллярная структура, фибриллы которой соединяются друг с другом самым случайным образом. Величины поперечных размеров фибрилл находятся в пределах 60—120 А. Такие фибриллы образованы, по-видимому, несколькими молекулярными цепочками, соединяющимися друг с другом определенным образом в «пачки», участвующие в таком виде в образовании вторичных структур. Исходя из размеров предельно асимметричной молекулы, расстояния между ними (приблизительно 7,5 А) и размеров фибрилл (60—120 А), мы можем заключить, что в образовании одной фибриллы участвуют от 8 до 16 молекулярных цепочек. В разбавленных растворах мы встречаем и отдельные изолированные частицы, которые представляют собой или сильно изогнутые изолированные, образованные соединением молекулярных цепочек «пачки», или, как и в случае полиакриловой кислоты и ее бариевой соли, отдельные симметричные глобулы, размеры которых соответствуют отдельным свернутым молекулярным цепочкам (90—100 А).[5, С.113]

Наличие кристаллической фазы всегда неблагоприятно отражается на растворении'полимеров, так как этот процесс требует предварительного разрушения кристаллических областей, для чего необходимы определенные энергетические затраты. Неупорядоченные области кристаллического полимера ведут себя по отношению к растворителям таким же образом, как аморфные полимеры, но присутствие кристаллических областей, образующих вторичные структуры, исключает значительное набухание. Поэтому чем менее совершенны кристаллические образования и выше температура, тем легче набухает полимер. Только при резком уменьшении общего числа кристаллических областей в результате повышения температуры или сильного взаимодействия полимера с растворителем становится возможным растворение. Во втором случае сумма теплоты, затраченной на плавление кристаллов, и теплоты, выделяемой при взаимодействии полимера с растворителем, должна быть больше нуля или, если она отрицательна, настолько мала, чтобы соблюдалось условие | ДЯ| < |[3, С.499]

Наличие сильно разветвленных вторичных структур для полиакрилатов натрия, цезия и четвертичных аммониевых оснований следует ожидать, если при рассмотрении конфигурационного состояния гибких полиионов в растворе исходить из соотношения между термическими силами, стремящимися свернуть цепочку в клубок, и электростатическими силами между заряженными звеньями цепи, приводящими к увеличению ее жесткости. И действительно, когда мы имеем дело со слабым полимерным электролитом (как было показано выше для случая полиакриловой кислоты в водном растворе), молекулы которого ионизированы только частично, полиион будет обладать формой компактного и более или менее диффузного клубка, так как внутримолекулярные электростатические силы отталкивания невелики и недостаточны для выпрямления молекулы, способствуя только расширению клубка. При введении в цепочку слабого полиэлектролита катионов, способствующих увеличению степени диссоциации ионогенных групп, а следовательно и возрастанию эффективного заряда цепи, следует ожидать возрастания внутримолекулярных электростатических сил отталкивания, а следовательно и жесткости цепи. Когда эти силы начинают превосходить термические, молекулярная цепочка начинает выпрямляться, приобретая форму вытянутой жесткой палочки. Следовательно, в растворах полиакрилатов натрия, цезия и четвертичных аммониевых оснований молекулярные цепочки будут предельно распрямлены. И далее, предельно асимметричные молекулярные цепочки агрегируют параллельным соединением друг с другом с образованием фибрилл, переплетение которых и дает нам сетки — вторичные структуры. Отдельные фибриллы имеют величины поперечных размеров, колеблющиеся в пределах 40— 120 А. Исходя из значения расстояний между компактно уложенными молекулярными цепочками (3 А) и величин поперечных размеров самой молекулярной цепочки (4,5 А), для случая предельной асимметрии, когда молекулы имеют форму вытянутой палочки, мы можем считать, что фибриллы составлены из 5—16 молекулярных цепочек, соединенных друг с другом в пачки. Следует отметить то обстоятельство, что и в сильно разбавленных растворах, где не имеет места образование вторичных структур из-за малой концентрации вещества, не происходит распад пачек; они продолжают существовать, приобретая из-за присущей им гибкости сильно изогнутую форму.[5, С.115]

На рис. 1, б и 2, б приведены микрофотографии исследованных полимеров, полученных из концентрированных растворов. Развернутые вторичные структуры, элементами которых являются молекулярные пачки, свидетельствуют о том, что пачка сохраняет свою индивидуальность в достаточно высоких концентрациях, где имеет место межпачечное взаимодействие.[5, С.123]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
2. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
3. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
4. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
5. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
6. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
7. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
8. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
9. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
10. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную