На главную

Статья по теме: Увеличения температуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

По мере увеличения температуры аномалия вязкостных свойств ослабевает. Изменение аномалии вязкостных свойств жидкостей можно оценить различными методами:[1, С.193]

Хотя сам факт увеличения температуры стеклования с возрастанием концентрации узлов был известен достаточно давно, попытки количественного описания этого явления были предприняты лишь сравнительно недавно. Первой работой в этом направлении следует, по-видимому, считать работу Юберейтера и Канига [12], в которой было изучено изменение Те для сополимеров стирола и дивинилбензола различного состава- Было найдено, что температура стеклования сшитого полистирола Те следующим образом зависит от концентрации узлов:[17, С.206]

Противоположное влияние увеличения температуры термообработки и предварительного деформирования растяжением на однородность сегментов четко показано на рис. 7.22. Концентрация N^ радикалов, полученных при разрыве образца[2, С.253]

При постоянном ММР влияние увеличения температуры или уменьшения молекулярной массы проявляются в смещении зависимости логарифма вязкости от скорости сдвига вертикально в сторону низких вязкостей, а горизонтально — в сторону более высоких скоростей сдвига [13-15]. Вертикальное смещение такое же, как для вязкостей нулевого сдвига. При изменении температуры горизонтальный сдвиг имеет такую же величину, как вертикальный. При изменении молекулярного веса горизонтальное смещение, как правило, меньше по величине, чем вертикальное.[19, С.56]

Скорость растворения терефталевой кислоты в этиленгликоле по мере увеличения температуры растет почти линейно, в то время как скорость .химической реакции этерификации увеличивается по степенному закону. Поэтому при увеличении температу-[7, С.27]

На рис. 4.7а, б представлены полученные зависимости скоростей продольных и поперечных ультразвуковых волн от температуры отжига для образцов нано структурной Си чистотой 99, 997 %. Можно видеть, что по мере увеличения температуры отжига наблюдается повышение скоростей для всех направлений распространения ультразвука с резким увеличением их значений при температуре 125° С.[8, С.169]

Высокоэластическое состояние специфично для полимеров: низкомолекулярные материалы таким свойством не обладают. Температурный интервал высокоэластического состояния на термомеханической кривой находится в пределах ГТ-ГС. По мере увеличения температуры от Тс до Гт доля свободного объема возрастает в соответствии с уравнением (3.13).[1, С.138]

Конечно, если повысить температуру до комнатной, подобные связи будут разрываться при условии, что напряженный сегмент цепи не подвергается никаким другим видам релаксации напряжения (проскальзывание, распутывание молекулярного клубка). Выявление разрывов связей в процессе увеличения температуры можно назвать критическим экспериментом в случае справедливости кинетического уравнения (5.57) и морфологической модели (рис. 7.5). Подобные исследования были[2, С.201]

Термофлуктуационный 'механизм является наиболее общим механизмом разрушения твердых тел, так как связан с фундаментальным явлением природы — тепловым движением. В наиболее чистом виде он реализуется при хрупком разрушении, а при других видах разрушения ему сопутствуют релаксационные процессы, которые по мере увеличения температуры играют все большую роль. При хрупком разрушении (ниже температуры хрупкости Т'хр) очагами разрушения обычно являются микротрещины, причем долговечность определяется ростом наиболее опасной микротрещины, которая в своем развитии переходит в магистральную трещину, приводящую к разрыву образца. Разрыв напряженных химических связей происходит под действием флуктуации, возникающих при неупругом рассеянии фононов относительно высокой энергии. Растягивающее напряжение увеличивает вероятность разрыва связей.[5, С.294]

Окислительное дегидрирование («оксо-Д») бутиленов по методу фирмы «Петро-Текс кемикл». Процесс впервые был осуществлен в 1965 г. [38]. В настоящее время в США около 75 % бутадиена, получаемого дегидрированием бутиленов, производится по технологии процесса «оксо-Д». Дегидрирование осуществляется непрерывно на саморегенерирующемся гетерогенном катализаторе в присутствии водяного пара. Водяной пар служит теплоносителем и в то же время позволяет избежать чрезмерного повышения температуры в адиабатическом реакторе. Чтобы предупредить дезактивацию катализатора и протекание побочных реакций, нельзя допускать увеличения температуры в реакторе. Процесс проводится таким образом, чтобы в реакции расходовался практически весь кислород [содержание его в продуктах реакции не более 0,3 % (масс.)].[6, С.185]

Возникновение или отсутствие градиента температур в быстрых процессах полимеризации, его изменение при переходе от одного макроскопического режима к другому (типа А, Б, В) оказывают заметное влияние на молекулярно-массовые характеристики образующегося полимера (см. табл. 3.4). Это связано с тем, что при малых значениях R температура в зоне реакции (при макроскопическом режиме типа А) распределена относительно равномерно, в то время как возникновение градиента температур в виде факела по координатам реакционного объема (макроскопические режимы Б и В) при радиусах выше некоторого критического значения RKp (под RKp понимается значение R, обусловливающее переход из режима типа А в режим типа Б) ведет к уширению ММР за счет накопления доли низкомолекулярной фракции. Следует иметь в виду, что ММР полимерного продукта уширяется по мере удаления от точки ввода катализатора вдоль оси х, что является следствием увеличения температуры и образования макромолекул при различных температурных условиях вдоль оси х. Расчеты адекватно отражают тенденцию влияния геометрических размеров реакторов при проведении жидкофазных весьма быстрых процессов полимеризации на молекулярно-массовые характеристики образующихся полимерных продуктов и согласуются с экспериментом (табл. 3.4) [9].[12, С.146]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
7. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
8. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
9. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
10. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
11. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
12. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
13. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
14. Северс Э.Т. Реология полимеров, 1966, 199 с.
15. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
16. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
17. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
18. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
19. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную