На главную

Статья по теме: Различных температурных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Характер теплового движения макромолекул в различных температурных интервалах неодинаков. В температурной области стеклообразного состояния энергия теплового движения недостаточна для перемещения отдельных участков макромолекул относительно друг друга, поэтому форма макромолекул и их взаимное расположение практически не изменяются во времени. Соответственно при малых нагрузках в стеклообразном состоянии у полимеров наблюдаются лишь небольшие обратимые деформации.[6, С.140]

Для испытания * серии образцов на многократный симметричный знакопеременный изгиб в различных температурных режимах применяют стенд СЭПИ, состоящий из 6 секций, заключенных в термошкаф. Динамическую выносливость N, характеризующуюся числом циклов деформаций до разрушения, определяют при помощи счетчиков, установленных на каждой секции. Коэффициенты динамической выносливости, характеризующие сопротивление образцов повторяющимся нагружениям, вычисляют, исходя из логарифмов N, /р, ер, е0) динамического модуля и амплитуды деформации.[11, С.153]

Подобно другим механическим испытаниям, твердость можно определить как при статическом, так и при динамическом нагруже-нии в различных температурных условиях. Наибольшее практическое значение имеют статические испытания на твердость при вдавливании стандартного наконечника. В практике испытания металлов твердость определяют измерением диаметра отпечатка. Это связано с тем, что измерение диаметра отпечатка требует меньшей точности мерительных средств. Поэтому измерение отпечатка более надежно, чем измерение глубины внедрения индентора. В случае испытания полимерных материалов получить стабильный по своим геометрическим формам отпечаток не представляется возможным вследствие ярко выраженных упруго-пластических и релаксационных свойств этих материалов. Поэтому твердость полимерных материалов определяют по величине погружения индентора за стандартный промежуток времени под стандартной нагрузкой. Почти во всех существующих приборах для определения твердости полимерных[4, С.61]

Таким образом, стеклообразное состояние является неким «замороженным», кинетически стабильным, но термодинамически неравновесным состоянием, а не новой фазой, отличной от жидкой. Наблюдаемые температурные кривые различных температурных коэффициентов (рис. II. 7) вполне объяснимы с молекулярно-кине-тической точки зрения [39, с. 27; 40, с. 24; 42, с. 69—73]. Так, в стеклообразном состоянии поглощаемая при повышении температуры теплота идет только на увеличение интенсивности колебаний частиц, и теплоемкость определяется колебательными степенями свободы. В структурно-жидком состоянии, к которому относятся и высокоэластическое, и вязкотекучее деформационные состояния, при нагревании затрачивается добавочная теплота, идущая на увеличение внутренней энергии при переходе от низкотемпературной плотной к высокотемпературной рыхлой структуре. Вследствие этого теплоемкость полимерного стекла меньше теплоемкости полимера в структурно-жидком состоянии. Поэтому на температурной кривой теплоемкости при переходе от жидкости к стеклу наблюдается падение теплоемкости (кривая /, рис. II.7). Тешювде расширение стекла в твердом состоянии происходит только за счет увеличения ангармоничности колебаний. Но в структурно-жидком состоянии объем при нагревании дополнительно уве-[5, С.88]

Машина УПЭ-10Т (рис. 5.1) предназначена для определения разрывных и упруго-прочностных свойств резиновых и резинотканевых материалов в различных температурных условиях.[4, С.44]

Релаксационные процессы в полимерах влияют на процессы разрушения во всех прочностных состояниях, включая и атерми-ческий процесс разрушения. В различных температурных областях полимера (см. рис. 7.1) наблюдаются три основных механизма разрушения: атермический, термофлуктуационный и релаксационный (см. табл. 7.1). В кристаллических полимерах ниже температуры плавления наблюдаются первые два механизма. При атермическом механизме (область самых низких температур) тепловое движение не может оказать существенного влияния на прочность полимера, так как время ожидания флуктуации Тф превышает время атермического разрушения тк. Однако слабое тепловое движение в этой области температур приводит к мелкомасштабным релаксационным переходам. Такие переходы характеризуются слабыми максимумами механических и диэлектрических потерь (у- и ;р-переходы) и вызывают увеличение энергии разрушения и прочности в областях переходов. В наиболее чистом виде термофлуктуационный механизм проявляется в области хрупкого разрушения, хотя и здесь возможны слабые \у- и (3-переходы, приводящие к неупругим эффектам в концевых зонах микротрещин в отсутствие высокоэластической деформации. Последняя наблюдается в концевых зонах микротрещин при переходе через те1мпературу Гхр. и выше, в области квазихрупкого разрушения. В итоге перенапряжения в концевой зоне сильно снижаются, но термофлуктуационный механизм разрушения остается тем же, что и при хрупком разрыве.[16, С.240]

Побочный продукт пиролиза — фракция С5 — привлекает внимание как источник сырья для производства изопрена и циклопен-тадиена. Ниже приведен состав (в %) фракции С5, полученной пиролизом бензина при различных температурных режимах:[7, С.48]

В этом случае наблюдается аномальная зависимость характеристик прочности от температуры и скорости деформации. Эти обстоятельства обусловливают возможность получения прямо противоположных выводов при сравнении характеристик полимера в различных температурных областях или при различных скоростях деформации.[14, С.219]

Зависимость тр от температуры [см. уравнение (3.10)] обусловливает аналогичную зависимость и критерия Деборы (De). Поэтому при построении полной термомеханической кривой (см. рис. 3.7), включающей стеклообразное, высокоэластическое и вязкотекучее состояния, необходимо учитывать, что продолжительность действия силы t для достижения заданной ?об в различных температурных областях может изменяться на несколько десятичных порядков.[1, С.141]

Повышение температуры полимеризации приводит не только к уменьшению среднего молекулярного веса полимера, но и к возрастанию количества фракций, содержащих сравнительно низкомолекулярные продукты полимеризации. В процессе блочной полимеризации вязкость реакционной среды быстро возрастает и ухудшаются условия теплопередачи, поэтому блочная полимеризация отдельных слоев мономера протекает при различных температурных режимах и полимер приобретает высокую макромолекулярную полидисперсность.[3, С.129]

При повторном нагревании с небольшой скоростью полностью отвержденных образцов вплоть до температуры отверждения и последующем охлаждении их до комнатной температуры получаются те же самые зависимости а н = ?(Тазм), которые изображены на рис. 3.13. Это свидетельствует о постоянстве значений внутренних напряжений при данной температуре. Следует отметить, что зависимости ствн = /(ГИЗм) для образцоз, отвержденных при различных температурных режимах, в области температур ниже Гс параллельны. Это свидетельствует о том, что для полностью отвержденных образцов произведение ?2(0,2 — cci) в области стеклообразного состояния полимера мало зависит от температуры отверждения.[12, С.76]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
5. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
6. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
7. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
8. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
9. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
10. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
11. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
12. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
13. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
14. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
15. Северс Э.Т. Реология полимеров, 1966, 199 с.
16. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
17. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
18. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
19. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
21. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную