На главную

Статья по теме: Зависимости относительного

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На рис. 11.45 и 11.46 приведены кривые температурной зависимости относительного удлинения при разрыве и работы деформации до разрыва для вулканизатов. Характерно, что значения разрушающего напряжения увеличиваются при достижении тех температур, при которых скорость распространения разрыва заметно уменьшается и увеличивается степень дополнительной[5, С.111]

О роли релаксационных явлений в кристаллических полимерах говорят результаты изучения зависимости относительного объема от температуры при крайне малых скоростях нагревания (рис. 131). Благодаря достаточной гибкости цепей исследованных полимеров большинство звеньев макромолекул успевает перегруппироваться, и плавление происходит резко (нижний перегиб кривых); приблизительно 80% полимера плавится в интервале 3—4°С. Второй перелом кривых почти такой же четкий, как и у низкомолекулярных тел. Более того, температура, при которой исчезают последние следы кристалличности, вполне определенная, что указывает на резкое окончание процесса плавления. Эта температура, согласно П. Флори, почти совпадает с температурой плавления гипотетического идеального макрокристалла,[4, С.447]

Рис. V.33. Графическое изображение временной зависимости относительного содержания продуктов деструкции [36, с. 238].[5, С.286]

На рис. 3 результаты подобных расчетов приведены в форме зависимости относительного объема пор от их радиуса. Полученные кривые могут рассматриваться как начальные участки дифференциальных кривых распределения относительного объема пор по их радиусам. Они приведены к одинаковому масштабу, хотя и не нормированы к единице. Как видно из этих графиков, метод малоуглового рассеяния позволяет учесть относительный объем пор радиусом менее 600 А; образцы, подвергшиеся длительному ацеталированию, несомненно, обладают также порами большего размера. Относительный объем последних не может быть установлен данным методом с достаточной точностью, что не позволяет нормировать кривые распределения.[7, С.111]

Введение в ПВХ сложноэфирных пластификаторов практически не изменяет температурную область перегиба на кривой'зависимости относительного удлинения при разрыве от температуры, но абсолютные значения относительного удлинения возрастают. Модуль упругости ПВХ пластикатов, содержащих диэфирные пластификаторы, в области высокоэластического состояния понижается до малых значений в узком интервале температур [309—311]. Обычно отношение модуля упругости пластиката в высокоэластическом состоянии к модулю упругости в застеклованном состоянии составляет 1 : 100 [312].[3, С.174]

При увеличении длины алкильного радикала спирта прочностных свойств пластифицированного ПВХ ухудшаются. График зависимости относительного удлинения пластифицированного ПВХ от содержания метиленовых групп в спиртовой составляющей ди-алкилфталата проходит через максимум [297]'.[3, С.173]

Полидисперсность полимеров может быть количественно описана с помощью функции распределения по молекулярным массам, т. е. зависимости относительного числа или весовой доли макромолекул с данной молекулярной массой qw(M) от величины М. Функция распределения макромолекул по молекулярным массам определяется соотношением скоростей элементарных реакций процесса полимеризации (инициирования, роста, обрыва цепей) и особенностями зависимости этих скоростей от длины цепи и условий Процесса.[1, С.21]

То обстоятельство, что кривые ар = / (lg V) меняются местами (см. рис. IV.7) при таких режимах деформации, при которых отсутствует ориентация в образце, понятно. Об отсутствии ориентации можно судить по зависимости относительного удлинения при разрыве от скорости деформации ер = /' (lg V). Действительно, при lg V = 3, когда кривые ар = / (lg V) меняются местами, кривые 8р = /' (lg V) сливаются (рис. IV.6), и значение ер становится примерно на порядок меньше значения, соответствующего наименьшим скоростям деформации.[5, С.193]

Для растворов полимеров характерны резко отрицательные отклонения от идеальности, что хорошо видно из рис. 151, на котором представлена зависимость относительного давления пара над раствором от мольной доли полимера в растворе. На рис, 152 приведены типичные кривые зависимости относительного давления пара над раствором полимера от состава, выраженного в весовых или объемных долях.[2, С.353]

Другое объяснение возникновения механической анизотропии основано на модели среды, состоящей из ориентированных линейных упругих элементов [52]. Изменение механических свойств при этом выражается только через продольный модуль пружины, который, в свою очередь, определяется по модулям неориентированного материала. Не удивительно, что теория предсказывает отсутствие зависимости относительного распределения модулей от природы полимера, т. е. подразумевает взаимную независимость пяти значений модулей упругости. Рассмотренные выше. данные показывают, что этот результат не согласуется с экспериментальными фактами.[8, С.241]

Из рассмотренных выше зависимостей относительного модуля (отношения Ей/En) от содержания наполнителя следует, что, хотя Ен и Еп зависят от температуры, относительный модуль должен быть почти независимым от температуры, несмотря на то, что теория Кернера предсказывает его слабое возрастание из-за увеличения с температурой коэффициента Пуассона. Согласно Нилсену [292, 302], зависимость отношения ЕН/ЕП от температуры может быть связана с изменением модуля упругости матрицы в наполнен^ ной системе по сравнению с ненаполненной. Известно, что вокруг частицы наполнителя в изотропной среде развиваются напряжения из-за различий в температурных коэффициентах расширения двух фаз при охлаждении материала после формования. Так как для полимеров характерна нелинейная зависимость напряжения от деформации, то модуль упругости уменьшается с напряжением. В результате модуль упругости полимера, находящегося вблизи частицы наполнителя, меньше, чем ненаполненного'полимера, даже если общий модуль композиции выше. Величина напряжений в полимере вокруг частицы наполнителя уменьшается с ростом температуры, а модуль соответственно возрастает. Теоретическое уравнение для температурной зависимости относительного модуля может быть представлено в виде[6, С.165]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
4. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
5. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
6. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
7. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
8. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
9. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
10. Виноградов Г.В. Реология полимеров, 1977, 440 с.
11. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
12. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
13. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.

На главную