На главную

Статья по теме: Достижение равновесия

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Достижение равновесия при поликонденсации можно ускорить использованием катализатора, однако в отличие от полиэтерифи-кации нет необходимости проводить указанные реакции в равновесных условиях. Первые две реакции получения полиамидов проводят обычно в расплаве; поликонденсацию в растворе (например, в ксилоле или Аг-грег-бутилфеноле) используют значительно реже из-за плохой растворимости полиамидов. В то же время поликонденсацию диаминов с дихлорангидридами проводят либо в растворе, либо на границе раздела фаз.[2, С.204]

Они показали, что при поликонденсации двух солей гексаметилендиамина в первую очередь в реакцию вступает соль кислоты, имеющей меньшую энергию активации (в данном случае — адипиновой), и лишь на последних этапах реакции происходит достижение равновесия, при котором состав исходной реакционной смеси и образующегося полиамида становится одинаковым.[13, С.147]

Увеличение ассоциации макромолекул данного полимера в смеси его с другими полимерами увеличивает степень ближнего порядка системы и увеличивает некомбинаториальный вклад в энтропию смешения, который в указанных условиях (рост ассоциации) может быть отрицательным и обусловливать уменьшение энтропии при смешении. Заметим, что при определенных условиях, когда облегчается достижение равновесия в смеси, можно получить для заведомо несовместимых полимеров (например, ПС и ПММА) смеси со значением плотности, заметно превышающим аддитивные значения [61]. Уплотнение смеси несовместимых полимеров также указывает на повышенную плотность укладки однородных по химическому составу макромолекул, т. е. на рост ближнего порядка в системе. Есть и другие данные, подтверждающие высказанную точку зрения [62].[5, С.19]

Ионная полимеризация. Механизм этого процесса весьма специфичен и отличается от механизма ионной полимеризации виниловых соединений. Предполагается, что в случае полимеризации А. обычно не происходит гибели кинетич. цепи вследствие обрыва на примесях, реакций с противоионом или спонтанных реакций изомеризации полимерного активного центра. Степень конверсии мономера может не достигать 100%, но это обычно связано с термодинамикой процесса (достижение равновесия) или с диффузионными затруднениями.[10, С.49]

Ионная полимеризация. Механизм этого процесса весьма специфичен и отличается от механизма ионной полимеризации виниловых соединений. Предполагается, что в случае полимеризации А. обычно не происходит гибели кинетич. цепи вследствие обрыва на примесях, реакций с противоионом или спонтанных реакций изомеризации полимерного активного центра. Степень конверсии мономера может не достигать 100%, но это обычно связано с термодинамикой процесса (достижение равновесия) или с диффузионными затруднениями.[12, С.46]

Подробно релаксационный характер процесса стеклования полимеров был изучен Ковачем |й. На рис. 77 приведены полученные им зависимости разности между объемом полимера V; и равновесным объемом при этой же температуре У™ от времени. Из рисунка видно, что с повышением температуры полимер быстрее приближается к равновесному состоянию. Сдвигая кривые по оси времени, их можно совместить. Это означает эквивалентность влияния температуры и времени на достижение равновесия, что является важным признаком релаксационного процесса (глава VII). Релаксационный характер процесса стеклования связан с медленностью перегруппировок цепей и надмолекулярных структур вблизи Тс.[3, С.191]

Подробно релаксационный характер процесса стеклования полимеров был изучен Ковачем 1Й. На рис. 77 приведены полученные им зависимости разности между объемом полимера Vt и равновесным объемом при этой же температуре V» от времени. Из рисунка видно, что с повышением температуры полимер быстрее [гриближается к равновесному состоянию. Сдвигая кривые по оси времени, их можно совместить. Это означает эквивалентность влияния температуры и времени на достижение равновесия, что является важным признаком релаксационного процесса (глава VII), Релаксационный характер процесса стеклования связан с медленностью перегруппировок цепей и надмолекулярных структур вблизи Тс.[1, С.191]

Точно так же имеются многочисленные опыты, которые свидетельствуют о том, что значение С2 тем меньше, чем выше подвижность сегментов цепей в сетке при данной температуре, и что С2 стремится к нулю при приближении условий деформации к равновесньш. Так, в одинаковых условиях деформации С2 для полисилок-сановых сеток значительно меньше, чем для вулканиза-тов натурального каучука (НК.), а С2 = 0 обычно достигают при деформации резин, набухших в низкомолекулярных растворителях (в этих условиях сильно увеличивается подвижность сегментов и ускоряется достижение равновесия в деформируемом полимере), или при деформации «сухих» сеток, полученных при сшивании системы, содержащей каучук, набухший в инертном растворителе.[4, С.21]

Наличие на рентгенограммах волокон целлюлозы дуг и пятен вместо колец, а также двойное лучепреломление однородного некристаллического тела оказались связанными с исключительно медленными процессами перегруппировок больших, довольно жестких цепных молекул целлюлозы, способных длительно сохранять приданную им ориентацию. Детальное структурное исследование процесса ориентации показало неизменность фазового состояния целлюлозы на всех стадиях этого процесса [27]. Таким образом, волокно целлюлозы оказалось твердым по агрегатному состоянию, но жидким по фазовому состоянию телом, анизодиаметричные молекулы которого ориентированы. Следовательно, волокно целлюлозы является анизотропной жидкой фазой, равновесному состоянию которой отвечает полностью дезориентированная структура [27—30]. Достижение равновесия в обычных условиях практически невозможно вследствие действия очень больших межмолекулярных сил, фиксирующих заданную структуру настолько прочно, что релаксационные процессы почти полностью подавляются.[7, С.81]

Равновесные системы и необратимые процессы. Известно несколько систем, в которых одна из фаз в соответствии с условиями истинного термодинамического равновесия выделяется в виде частиц или доменов определенного размера и числа. Яркий пример таких систем — растворы дифильных веществ, включающих как низкомолекулярные ПАВ [69], так и дифильные полимеры [69, 70]; в этих системах образуются мицеллы. Аналогичное явление происходит при микрофазовом разделении в блоксополимерах, в которых равновесие может быть «заморожено», когда материал переходит в твердое состояние из расплава или при испарении раствора [70, 71]. Другой пример —самопроизвольное эмульгирование некоторых содержащих кислотные группы сополимеров в водных растворах щелочи [72 ]. Во всех указанных системах, рост частиц сверх определенного размера ограничен, поскольку в результате этого часть добавленных молекул оказывается в энергетически невыгодном состоянии. Достижение равновесия возможно только вследствие достаточно высокой подвижности или растворимости разделяющихся фаз, допускающих такое разделение.[6, С.163]

Во многих живущих системах при полимеризации растут все макромолекулы одновременно. Иногда к Ж. п. относят только такие системы, однако ото неверно. Напр., при полимеризации под действием литийор-ганич. соединений в углеводородной среде в каждый момент растет лишь небольшая доля макромолекул, а подавляющее большинство активных центров находится в виде неактивных ассоциатов. Однако благодаря быстрому обмену между ними в суммарном процессе принимают участие вес цепи (см. Анионная полимеризация, Диенов полимеризация), и система обладает всеми свойствами Ж. п. К этому случаю близки образующиеся при синтезе гетероцепных полимеров системы, в к-рых отсутствуют обрыв и передача цепи через мономер, растворитель и т. д., но протекает передача цепи на полимер с разрывом цепи полимера, в результате к-рой происходит непрерывный обмен активными центрами между цепями. Эти системы сохраняют большинство признаков Ж. п. (кинетически стабильные активные центры, рост мол. массы пропорционально количеству образовавшегося полимера, достижение равновесия полимеризация — деполимеризация). Но в отличие от ранее рассмотренных примеров в этих системах передача цепи с разрывом в конечном счете приводит к установлению равновесного распределения макромолекул как по размеру («наиболее вероятное» ММР с MwIMn=2), так и по составу.[10, С.389]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
2. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
3. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
4. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
5. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
6. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
7. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
8. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
9. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.

На главную