На главную

Статья по теме: Физических состояниях

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Учение о фазовых и физических состояниях полимеров имеет большое практическое значение для технологии переработки и для эксплуатации полимерных материалов. Взаимное расположение цепей определяет все механические характеристики волокон, пленок, каучуков, пластических масс, и задача получения полимерных материалов с заданными свойствами в очень сильной степени зависит От структуры, которая придается материалу в технологических процессах.[8, С.151]

Учение о фазовых и физических состояниях полимеров имеет большое практическое значение для технологии переработки и для эксплуатации полимерных материалов. Взаимное расположение цепей определяет все механические характеристики волокон, пленок, каучуков, пластических масс, и задача получения полимерных материалов с заданными свойствами в очень сильной степени зависит От структуры, которая придается материалу в технологических процессах.[12, С.151]

Полимеры могут находиться в четырех физических состояниях— одном кристаллическом и трех некристаллических: стеклообразном, высокоэластическом и вязкотекучем. При этом следует иметь в виду, что так называемые частично-кристаллические полимеры никогда полностью не закристаллизованы и содержат значительную часть некристаллической фазы. Полимеры, находящиеся в стеклообразном или кристаллическом состоянии, вследствие их относительно высокой твердости обычно называют твердыми.[4, С.31]

В связи с этим было введено представление о трех физических состояниях, в которых могут находиться полимеры: вязкотекучем, высокоэластическом и стеклообразном. Вязкотекучее состояние полимеров характерно тем, что в нем возможно интенсивное тепловое движение отдельных звеньев, больших фрагментов полимерной цепи — сегментов и перемещение молекул как единого целого. Это состояние типично для большинства жидкостей. Наиболее важная особенность полимеров, находящихся в этом состоянии, — способность течь под действием приложенного напряжения, текучесть. Текучесть характеризуется вязкостью, которая как физическое явление относится к процессам переноса и как все процессы переноса по своей сути имеет релаксационный характер. Основные закономерности, относящиеся к вязкости полимеров и вязкотекучему состоянию, подробно изложены в ряде обзорных статей и монографий [1—5]. При понижении температуры жидкость может закристаллизоваться или перейти в стеклообразное состояние, в котором могут находиться переохлажденные сильно вязкие жидкости. Переход в стеклообразное состояние[21, С.73]

Аморфно-жидкие линейные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Для каждого из этих состояний характерен определенный комплекс физико-механических свойств материалов. Для низкомолекулярных веществ является совершенно обычным, что в число характеристик вещества входят температуры плавления и кипения. Аналогично и при изучении свойств полимеров следует в числе характеристик вещества указывать температурные области переходов из одного физического состояния в другое. Только знание этих характеристик позволяет производить сравнения физических свойств различных полимеров, а также позволяет судить о комплексе свойств полимеров при разных температурах.[24, С.246]

В зависимости от температуры полимеры могут находиться в различных физических состояниях. Не усложняя этот вопрос термодинамическими тонкостями, отметим, что это твердое, размяггенное и вязкотекугее состояния. Характер перехода из одного состояния в другое зависит от химического строения полимера, его физической организации и демонстрируется в виде термомеханических кривых, снятых в определенных условиях и построенных в функции деформация (е) — температура (Т) (рис. 3) [1].[19, С.15]

Низкомолекулярные аморфные полимергомологи могут находиться только в двух физических состояниях: стеклообразном и жидком; их температуры стеклования и текучести совпадают. Переход из стеклообразного состояния в жидкое сопровождается[6, С.104]

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях[4, С.3]

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях[4, С.31]

Аморфные линейные полимеры в зависимости от температур могут находиться в трех физических состояниях: стеклообразно, высокоэластическом и вязкотекучем. Один и тот же полимер nj! нагревании и охлаждении может переходить из одного физич( ского состояния в другое. -[13, С.20]

Каучуки, как аморфные полимеры, в зависимости от температуры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Высокоэластическое состояние является наиболее характерным для каучуков; в этом состоянии они обладают одним из наиболее важных физических свойств — эластичностью, т. е. способностью обратимо деформироваться в значительных пределах под действием сравнительно небольших усилий. Так, максимальная величина обратимой деформации растяжения каучука лежит в пределах 500— 1000% , в то время как у типичных твердых тел упругое (обратимое) удлинение редко превышает 1%. Способность каучуков к большим обратимым деформациям называется высокоэластич-н остью.[7, С.82]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
7. Белозеров Н.В. Технология резины, 1967, 660 с.
8. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
9. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
10. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
11. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
14. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
15. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
16. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
17. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
18. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
19. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
20. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
21. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
22. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
23. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
24. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
25. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
26. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
27. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
28. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
29. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
30. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
31. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
32. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
33. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
34. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
35. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную