На главную

Статья по теме: Изменения надмолекулярной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Снизить скорость окисления и др. процессов, протекающих при старении, можно нутом изменения надмолекулярной структуры полимера (структурная стабилизация). Это м. б. достигнуто как с помощью добавок, изменяющих структуру полимера (т. паз. структу-рообразователей), так и путем механической (ориентация) или термической обработки полимера. См. также Модификация структурная.[7, С.240]

Снизить скорость окисления и др. процессов, протекающих при старении, можно путем изменения надмолекулярной структуры полимера (структурная стабилизация). Это м. б. достигнуто как с помощью добавок, изменяющих структуру полимера (т. наз. структу-рообразователей), так и путем механической (ориентация) или термической обработки полимера. См. также Модификация структурная.[8, С.240]

При оценке влияния наполнителей на электрическую прочность помимо образования неоднородного диэлектрика необходимо учитывать возможность изменения надмолекулярной структуры наполненных полимеров по сравнению с ненаполненными и вероятность увеличения макроскопической дефектности образцов. Нередко при введении наполнителей, особенно при высоких степенях наполнения, в материале возникают поры и трещины; в таких случаях падение электрической прочности возможно даже при незначительном различии в значениях диэлектрической проницаемости и электрической проводимости-наполнителя и полимера. С другой стороны, некоторые мелкодисперсные добавки могут способствовать образованию однородной мелкосферолитной структуры образцов и тем самым приводить к увеличению ^пр [4, с. 112; 129].[4, С.146]

Однако к данным, полученным методом ртутной порометрии, следует относиться критически, поскольку незначительные давления способны вызывать заметные изменения надмолекулярной структуры полимера и существенно искажать результаты измерения [96].[2, С.38]

Механические модели, рассмотренные выше, не описывают экспериментальную кривую напряжение — деформация типа кривой 1 на рис. 9.10. Это естественно, поскольку при растяжении эластомера происходят, как мы видели, изменения надмолекулярной структуры, а в механических моделях структурные превращения не учитываются. Механические модели описывают только самый начальный близкий к линейному участок кривой. Чем больше скорость деформации, тем труднее растягивать эластомер. При очень большой скорости деформации узлы флуктуационной сетки не успевают распадаться и структурных изменений не происходит. В этом случае напряжение линейно увеличивается с ростом деформации вплоть до разрыва (кривая 2).[1, С.126]

Из рис. 9.10 видно, что совпадение кривых нагрузка — удлинение и разгрузка — удлинение (кривая 2 и 4) наблюдается при очень большой скорости деформации, когда не успевают распадаться узлы флуктуационной сетки, либо при очень медленной равновесной деформации. В обоих этих случаях в процессе сокращения образца успевает восстановиться надмолекулярная структура, которая существовала в момент растяжения. В первом случае распада узлов сетки не было и поэтому незначительные изменения надмолекулярной структуры (например, частичная ориентация сегментов макромолекул в направлении растяжения) быстро релаксировали при сокращении. Во втором случае узлы сетки распадались, наблюдалась значительная ориентация сегментов макромолекул, но все эти изменения надмолекулярной структуры успевали восстановиться полностью в процессе сокращения благодаря большой продолжительности процесса. Таким образом в тех случаях, когда релаксационные процессы при сокращении образца успевают пройти полностью, петля гистерезиса отсутствует. Отсутствие петли гистерезиса означает отсутствие потерь меха-[1, С.127]

На П. х. в. и изменение ее во времени большое влияние оказывает окружающая среда. Влага, органич. жидкости или др. пластификаторы повышают подвижность структурных элементов волокон и приводят к росту удлинения при разрыве, понижению П. и модуля. Химич. реагенты, фотохимич. воздействия, ионизирующее излучение приводят к деструкции, уменьшению мол. массы, изменению химич. строения макромолекул и снижению П. Сшивание обычно не сопряжено с понижением П. х. в. (если при этом не происходит заметная перестройка надмолекулярной структуры), но повышает модуль. В результате химической модификации П. х. в. обычно резко снижается как из-за значительного изменения надмолекулярной структуры волокна и уменьшения числа проходных цепей на единицу сечения волокна, так и из-за протекания одновременно с модификацией процессов деструкции и пластификации.[7, С.119]

На П. х. в. и изменение ее во времени большое влияние оказывает окружающая среда. Влага, органич. жидкости или др. пластификаторы повышают подвижность структурных элементов волокон и приводят к росту удлинения при разрыве, понижению П. и модуля. Химич. реагенты, фотохимич. воздействия, ионизирующее излучение приводят к деструкции, уменьшению мол. массы, изменению химич. строения макромолекул и снижению П. Сшивание обычно не сопряжено с понижением П. х. в. (если при этом не происходит заметная перестройка надмолекулярной структуры), но повышает модуль. В результате химической модификации П. х. в. обычно резко снижается как из-за значительного изменения надмолекулярной структуры волокна и уменьшения числа проходных цепей на единицу сечения волокна, так и из-за протекания одновременно с модификацией процессов деструкции и пластификации.[8, С.119]

Направленное изменение надмолекулярной структуры полимеров может осуществляться различными путями. Во-первых, структуру можно изменять под воздействием соответствующей температуры и деформационной обработки [7—9]. В качестве примера можно привести ориентацию полимерных пленок, закалку экструзионных и литьевых изделий. В ряде случаев быстроохлаждаемое изделие обладает высокой механической прочностью. Однако этот метод регулирования механических свойств используется лишь для тонкостенных изделий. В толстостенных изделиях часто наблюдается неоднородность структурных образований, что ведет к появлению разного рода микродефектов, вызывающих значительный разброс показателей физико-механических свойств готовых изделий и снижающих их надежность. Второй путь изменения надмолекулярной структуры материала в изделии — введение в полимер перед переработкой или в процессе переработки небольших количеств различных веществ, которые могут иметь самую разнообразную природу. Вследствие этого различается механизм их воздействия на полимерный материал [10].[5, С.416]

Однако в отличие от низкомолекулярных веществ в полимерах наблюдается не температура плавления, а скорее температурный интервал плавления, положение которого может изменяться в зависимости от -молекулярной массы полимера и размеров микрокристаллитов, поверхностной энергии и концентрации дефектов в микрокристаллитах и других характеристик надмолекулярной структуры образца. Кроме того, на температуру плавления полимеров значительное влияние оказывают условия эксперимента (например, скорость нагревания и т. п.), что послужило причиной того, что раньше измерения температуры плавления проводили при очень низких скоростях нагревания с целью максимального приближения к равновесным значениям температуры плавления. В настоящее время эксперименты, напротив, проводят при достаточно высоких скоростях нагревания с. тем, чтобы свести к минимуму возможные изменения надмолекулярной структуры полимера в процессе измерений (в частности, изменение размеров кристаллитов). Строго говоря, вопрос о надежных значениях равновесных температур плавления для различных полимеров остается еще до конца не выясненным.[6, С.165]

Если представить графически зависимость In (eyc/ /8ОСТ) от 1/Тус (Гус —температура, при которой происходит уменьшение задержанной высокоэластической деформации, т. е. температура усадки), то станет очевидно, что при сравнительно низких значениях Тус наклон всех кривых одинаков независимо от того, при каких условиях происходила предварительная деформация образцов (рис. IV. 13). При более высоких значениях Тус кривые претерпевают резкий излом, практически все сливаются в одну прямую. Значение кажущейся энергии активации первой и второй температурных областей неодинаковы и равны соответственно: Ev = 84 кДж/моль кин. ед. и ?2 = 16,6 кДж/моль кин. ед. Это дает основание полагать, что в низкотемпературной области восстановление формы происходит по одному механизму, а в высокотемпературной — по другому. Электронно-микроскопические исследования показали, что в низкотемпературной области происходят видимые изменения надмолекулярной структуры, сформировавшейся в процессе деформации (рис. IV. 14—IV. 16).[3, С.202]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
3. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
4. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
5. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
6. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
7. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
8. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную