На главную

Статья по теме: Образующихся макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При цепной полимеризации длина образующихся макромолекул обычно очень велика; молекулярная масса их часто достигает нескольких сотен тысяч и даже миллионов. Молекулярная масса, или конечная степень полимеризации полимера, образующегося в результате цепной полимеризации, нарастает не постепенно по мере протекания реакции, а достигается почти мгновенно. Средняя молекулярная масса, степень и характер полидисперсности образующейся смеси полимергомологов зависят от кинетики реакции полимеризации, оказывающей поэтому решающее влияние на свойства конечных продуктов.[5, С.62]

Ступенчатая реакция поликонденсации метилольных производных фенола сопровождается процессами фенолиза образующихся макромолекул и возникновением разнообразных сравнительно низкомолекулярных продуктов. Эти продукты вместе с небольшим количеством воды, сольватируюшей макромолекулы, содержащие rf-енольные звенья, распределяются в межмолекуляр-[2, С.378]

Строение мономера оказывает влияние не только на рост цепи макромолекулы, скорость этого процесса и взаимное расположение звеньев в цепи, но и на структуру образующихся макромолекул. От строения мономера зависит возможность образования линейных цепей, цепей с длинными боковыми ответвлениями, полимеров пространственной структуры. Соединения с одной двойной связью, в которых замещающие группы достаточно стабильны в условиях процесса полимеризации, образуют макромолекулы преимущественно линейной структуры. При мягких условиях полимеризации таких мономеров сравнительно редко протекают вторичные процессы, связанные с возникновением в звеньях макромолекул свободных валентностей, которые могут явиться началом образования боковых ответвлений. В случае полимеризации мономеров, содержащих легко подвижные замещающие группы, возможность протекания вторичных процессов более вероятна, что приводит к возникновению в макромолекулах боковых ответвлений. Например, в процессе полимеризации хлористого винила наблюдается некоторое уменьшение количества хлора в полимере. Это указывает на то, что в растущих макромолекулах полимера возникают свободные валентности и дальнейшее присоединение молекул мономера может происходить в нескольких направлениях.[2, С.114]

В процессе полимеризации винилхлорида следует избегать повышения температуры реакции более 60°, иначе увеличивается интенсивность отщепления хлористого водорода от отдельных звеньев образующихся макромолекул. Это способствует возрастанию разветвленное™ структуры полимера.[2, С.264]

Если принять, что в процессе поликонденсации функциональные группы не участвуют в побочных процессах, а принимают участие только в реакциях поликонденсации и что скорость реакции не зависит от размера образующихся макромолекул, можно установить следующую зависимость для скорости vv процесса поликонденсации как реакции второго порядка:[2, С.163]

Координационная ненасыщенность атома никеля в этом соединении, по-видимому, обусловливает высокую активность таких каталитических систем. Отсутствие ацидолигандов во внутренней координационной сфере центрального атома может способствовать стабилизации а«т«-л-аллильных аддуктов, возникающих после внедрения координированных молекул бутадиена. Исследование процесса полимеризации бутадиена под влиянием гомогенных каталитических систем на основе бис(л-кротилникельхлорида) и GaCl3 в хлорбензоле показало, что структура образующихся макромолекул не зависит от характера координации мономера с атомом никеля [39]. Комплекс [n-C.jHrNvMGaCU]", так же как и его аддукт 1:1 с трифенилфосфином, трибутилфосфином и трифенил-фосфитом вызывали цис-1,4-полимеризацию бутадиена, хотя в двух последних случаях число вакантных мест для координации с мономером уменьшалось до одного.[1, С.126]

Многочисленными экспериментальными исследованиями уста новлено, что наряду с реакцией поликонденсации протекают про цессы, вызывающие деструкцию образующихся макромолекул по длине их цепи. Эти деструктивные процессы являются резуль татом взаимодействия макромолекул полимера с исходными ве ществами и низкомолекулярными побочными продуктами поли конденсации. В зависимости от типа исходных компонентов и начальных продуктов поликонденсации процессы деструкции могут происходить по принципу ацидолиза (деструкция под дей ствием кислот), аминолиза (деструкция полимера под действием аминов), алкоголиза (деструкция под действием спиртов). Де-структирующее действие перечисленных низкомолекулярных веществ распространяется прежде всего на макромолекулы, достигшие наибольших размеров. Вследствие меньшей стабильности и более легкой деструкции макромолекул высших фракций про-[2, С.167]

В системе изобутилен — BF3 ограничение длины образующихся макромолекул происходит главным образом в результате переноса протона от растущего макроиона к противоиону или передачи[3, С.19]

Как видим, параметры процесса полимеризации и размер образующихся макромолекул полимера для основного периода превращения мономера в полимер могут быть легко выражены через задаваемую известную величину — концентрацию химического инициатора процесса свободнорадикальной полимеризации. Физический смысл этих положений заключается в том, что с ростом кон-[4, С.27]

При деструкции полимеров по закону случая в течение времени т среднестатистическая длина образующихся макромолекул, характеризуемая средней степенью полимеризации нт, зависит от степени потимеризации исходного полимера «о и среднего числа связей 5, распадающихся в каждой макромолекуле за период времени т[7, С.192]

Основные закономерности протекания ступенчатых реакций синтеза полимеров существенно отличаются от закономерностей цепных реакций. Два важных фактора определяют размер и структуру образующихся макромолекул полимера: стехиометрия (если число компонентов больше одного) и степень завершенности реакции по расходу функциональных групп реагирующих компонентов.[4, С.72]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
11. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
14. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
15. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
16. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
17. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
18. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
19. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
20. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
21. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
22. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
23. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную