На главную

Статья по теме: Подчиняется закономерностям

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Вместе с тем процесс подчиняется закономерностям, установленным для полиолефинов, т. е. протекает без вырожденных разветвлений с малой вероятностью передачи цепи. Рекомбинация не характерна для превращений полимерных радикалов в полипропилене [32]. Не происходит в заметной степени и изомеризация RS- радикалов, так как один из продуктов такой реакции — тиокетонные группы — появляется лишь на конечных стадиях сульфидирования АПП (поглощение при 315 нм в УФ-епектрах). Остаются реакции диопропорционирования радикалов. Учитывая клеточные эффекты, наиболее вероятным представляется следующее направление этого процесса:[11, С.198]

Адгезионное разрушение подчиняется закономерностям, аналогичным закономерностям когезионного разрушения. Часто расслаивание склеек представляет собой не адгезионное, а коге-зионное разрушение одного из слоев. Характеристики адгезионной прочности связаны с температурой, скоростью роста дефектов и временем воздействия разрушающей силы зависимостями, аналогичными температурной, скоростной и временной зависимостям, когезионной прочности, а также с температурой и временем контакта, давлением и энергией адгезионных связей. Эта связь в каждом конкретном случае может быть выражена количественно.[10, С.139]

Реакция полирекомбинации подчиняется закономерностям, характерным для реакций поликонденсации (ступенчатый характер нарастания молекулярного веса, наличие низкомолекулярных продуктов — трет, бутанола и метана) — однако она, в отличие от реакции поликонденсации, является необратимым процессом; в ней отсутствует обратная реакция деструкции полимерной цепи.[22, С.717]

Есть основание предполагать, что полимеризация дивинила в присутствии натрийорганического соединения также подчиняется закономерностям анионной полимеризации. Процесс активации заключается в поляризации части молекул мономера с образованием начального центра полимеризации:[2, С.231]

Изложенные выше основы кинетической теории прочности относятся к полимерам, которые мало деформируются перед разрушением. Это полимеры, надмолекулярная структура которых в момент разрушения сохраняется такой же, как в исходном образце, а не меняется кардинально в результате ориентации, как в эластомерах. Изменение надмолекулярной структуры в эластомерах, сильно деформирующихся к моменту разрушения, приводит к тому, что зависимость долговечности от напряжения в них подчиняется закономерностям, отличающимся от тех, что описываются уравнением Журкова.[3, С.205]

Размыкание и полимеризация таких циклов ускоряются катализаторами, диссоциирующими с образованием протона или гидр-оксильной группы. Реакция полимеризации неустойчивых циклов характеризуется высокой скоростью и низкой величиной энергии активации. С повышением концентрации иона, служащего катализатором процесса, увеличивается скорость полимеризации и молекулярный вес образующегося полимера. Эти наблюдения дают основание предполагать, что процесс полимеризации неустойчивых циклических окисей подчиняется закономерностям процессов ионной полимеризации:[2, С.405]

Высокомолекулярные полиоксиметилены получают полимеризацией чистого сжиженного формальдегида при температуре ниже —20°. С повышением температуры скорость реакции быстро возрастает, что может привести к взрыву. В атмосфере азота при —80° жидкий формальдегид в течение нескольких часов превращается в полимер. В присутствии кислорода воздуха реакция полимеризации при —80° длится несколько дней. Трехфтористый бор, триметиламин и н-б.утиламин ускоряют реакцию полимеризации. Очевидно, образование полимера из жидкого формальдегида подчиняется закономерностям цепной ионной полимеризации, чем и объясняется высокий молекулярный вес получаемого полимера. Прекращение роста цепи является результатом присоединения к растущему макроиону противоположно заряженных ионов, образующихся при распаде комплексного катализатора, или ничтожных примесей каких-либо соединений, содержащихся в продуктах реакции.[2, С.400]

Из данных таблицы видно, что объем атома фтора лишь незначительно отличается от объема атома водорода. Поэтому полимеризация фторпроизводных этилена не связана с преодолением пространственных затруднений, препятствующих соединению молекул мономера. Этим объясняется способность фтор-производных этилена к полимеризации, даже в том случае, когда все атомы водорода замещены атомами фтора. Высокая полярность связи углерод—фтор обусловливает поляризацию -re-связи в молекуле несимметричного фторпроизводного этилена, вследствие чего мономер легко превращается в активный радикал. Процесс полимеризации всех полимеризующихся галоидопроизводных этилена подчиняется закономерностям реакции радикальной полимеризации.[2, С.252]

Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкого-лятов калия, в качестве добавок сближающих константы сопо-лимеризации. При исследовании кинетики полимеризации 1,3-пен-тадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литий-органическими соединениями, то цыс-форма ведет себя иначе во всех растворителях: эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17].[1, С.418]

При малых степенях превращения радиационная полимеризация подчиняется закономерностям фотохимической полимеризации. На более глубоких стадиях превращения процесс полимеризации под действием ионизирующего облучения значительно осложняется.[4, С.66]

Поведение фосфорсодержащих полных сложных эфиров при термоокислительной деструкции подчиняется закономерностям, установленным для эфиров карбоновых кислот и спиртов [8, 45,. 62, 83^-85]. Так, эфиры ортофосфорной кислоты и алифатических спиртов менее стойки к термическому и термоокислительному воздействию, чем смешанные алкиларилортофосфаты или три-арилортофосфаты.[7, С.108]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
8. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
11. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
12. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
13. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
14. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
20. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
21. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
23. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
24. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
25. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную