На главную

Статья по теме: Получаемых полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Свойства получаемых полимеров зависят от характера исходных веществ. Полиэфиры с алифатической цепью представляют собой вязкие, густые масла или неплавкие смолы. Полиэфиры с ароматическими звеньями в цепи—высокоплавкие, твердые эластичные вещества.[1, С.466]

Склонность к полимеризации различных галоидопроизводных этилена (отличающихся по числу и типу заместителя), а также свойства получаемых полимеров во многом зависят от радиуса атома галоида, прочности его связи с углеродом и полярности этой связи. Количественные характеристики указанных свойств приведены в табл. 13. Для сопоставления в этой же таблице указаны сведения, характеризующие атом водорода и его связь с атомом углерода.[1, С.252]

Механизм и кинетику образования высокополимерных соединений изучают различными методами, в том числе путем определения скорости процесса при разных условиях реакции, определения химического состава продуктов реакции, а также физических свойств и химического строения полимера в процессе его образования. Полученные данные используют для усовершенствования промышленных процессов синтеза полимеров и для установления влияния условий синтеза на свойства получаемых полимеров.[1, С.86]

Предполагают, что алкоголят и хлористый натрий образуют смешанный кристалл, на поверхности которого происходит адсорбция алкил-(арил)-натрия и мономера. Взаимодействие их друг с другом и с поверхностью кристалла вызывает полимеризацию. Полимеризация вблизи твердой поверхности происходит одновременно с ориентацией присоединяемых звеньев, благодаря чему образуются полимеры высокоупорядоченного строения. Ориентация мономера вызывается поляризацией его молекул на поверхности кристаллов. Полимеризация под влиянием алфино-вы.х катализаторов происходит значительно быстрее, чем г; присутствии металлорганических соединений. Например, скорость полимеризации стирола в присутствии амилнатрия в смеси с изопропилатом натрия и хлористым натрием в 6—10 раз больше, чем в присутствии одного амилнатрия. Одновременно возрастает и степень полимеризации получаемых полимеров.[1, С.144]

Разнообразие свойств получаемых полимеров достигается изменением радикала альдегидной группы и количества ненасыщенных связей в исходном ацетале:[1, С.292]

По пространственному строению получаемых полимеров различают линейную и трехмерную полнконденсацию. При линейной поликонденсации нз бифункциональных мономеров получают линейные полимеры, при трехмерной — из мономеров с тремя или большим числом функциональных групп образуются разветвленные или трехмерные (сетчатые, сшитые) структуры.[9, С.147]

По пространственному строению получаемых полимеров различают линейную, разветвленную и трехмерную поликонденсацию. Поликонденсация, в которой участвуют только бифункциональные мономеры, приводит к образованию макромолекул линейной структуры, и полимер называют линейным. Процесс поликонденсации, в котором участвуют мономеры, из которых хотя бы один имеет функциональность более двух, при-[11, С.42]

Единой кинетической схемы для описания скорости катионной полимеризации и расчета молекулярных масс получаемых полимеров не существует, поскольку практически каждая конкретная система мономер — катализатор—растворитель характеризуется индивидуальными кинетическими закономерностями. Общим для большинства катионных систем является то, что скорость процесса пропорциональна концентрации возбудителя в первой степени, а молекулярная масса не зависит от концентрации катализатора (в отличие от радикальной полимеризации).[2, С.20]

Реакцию между эпихлоргидрином и двуатомным фенолом проводят также в щелочной среде при 100°. Молекулярный вес получаемых полимеров составляет 1000—4500. В табл. 21 приведена зависимость молекулярного веса полиэпоксида, количества глицидных групп на концах его макромолекул и температуры размягчения полимера от соотношения эпихлоргидрина и дифенилолпро-пана в исходной смеси мономеров.[1, С.410]

Замещение атомов водорода в боковых метальных группах полимера какими-либо другими атомами или группами дает возможность в очень широких пределах варьировать свойства получаемых полимеров. Замещение метальных групп монохлорметильными[1, С.406]

В зависимости от абсолютного значения константы равновесия К различают равновесную (обратимую) и неравновесную (необратимую) поликонденсацию. Если в условиях реакции степень превращения и молекулярная масса получаемых полимеров определяется равновесными концентрациями реагентов и продуктов реакции, то такая поликонденсация называется равновесной или обратимой. Для обратимых реакций величины /С лежат в интервале от нескольких единиц до нескольких десятков. Например, при полиэтерификации пентаметиленгликоля и адипиновой кислоты К = 6,0, а при полиамидировании СО-аминоундекановой кислоты К — 8,9. При К > Ю3 степень превращения функциональных групп и молекулярная масса получаемого полимера лимитируется не термодинамическими, а кинетическими факторами. Такую поликонденсацию называют неравновесной или необратимой. Так, при поликонденсации диаминов с дихлорангидридами ароматических дикарбоновых кислот К ^ Ю15.[2, С.32]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Амброж И.N. Полипропилен, 1967, 317 с.
7. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
8. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
9. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
10. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
11. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
12. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
13. Блаут Е.N. Мономеры, 1951, 241 с.
14. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
15. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
16. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
17. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
18. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
19. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
20. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
21. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
22. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
23. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
25. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
26. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
27. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
28. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
29. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную