На главную

Статья по теме: Поведение полимерных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Как отмечалось выше, поведение полимерных молекул .^находящихся во всех аморфных состояниях: стеклообразном, высокоэластическом, в расплаве и в растворе, — можно описывать, считая, что "в равновесном состоянии они имеют конформацию статистического клубка. В стеклообразном состоянии подвижность полимерной цепи отсутствует, во всех остальных состояниях она имеется. Исключение составляют лишь жесткоцепные системы. Таким образом,[1, С.41]

Реологические свойства характеризуют поведение полимерных систем при деформировании. Они определяют зависимость между напряжениями, деформациями и скоростями деформаций. Эти зависимости, измеренные при различных температурах для полимеров разного молекулярного веса и полимерных систем разного состава, дают важную информацию об их структуре и структурных превращениях.[2, С.241]

По форме математическое выражение, описывающее зависимость коэффициента трения от нормальной нагрузки (4.3-6), подобно так называемому степенному закону течения, описывающему неньютоновское поведение полимерных расплавов [см. уравнение (6.5-2)]. Выражение (4.3-6) показывает, что, за исключением случая а= 1, коэффициент трения с ростом нормальной нагрузки FN уменьшается. Этот вывод подтверждается экспериментальными данными (рис. 4.3) [11, 12].[1, С.86]

Благодаря этой аналогии, оказалось возможным применить для описания поведения полимерных клубков аппарат теории магнетиков, а поскольку к этому времени уже было выяснено, что поведение всех систем вблизи точки фазового перехода второго рода (критической точки) подчиняется гипотезе подобия (скейлинга), то, соответственно, и поведение полимерных клубков достаточно большой молекулярной массы стало естественным анализировать, используя скейлинговый подход.[4, С.118]

Подавляющее большинство операций формования и элементарных стадий процессов переработки полимеров включает либо изотермическое, либо (чаще) неизотермическое течение расплавов полимеров в каналах сложной геометрии. Поэтому перед тем как рассматривать реальный технологический процесс, целесообразно отдельно изучить реологическое поведение полимерных расплавов в простых условиях течения и в отсутствие градиентов температуры. В этой главе поставлена задача пояснить физический смысл таких понятий, как «неньютоновское поведение», «вязкоупругость», «начальный коэффициент нормальных напряжений» и «функция вязкости». Здесь же будут рассмотрены определяющие уравнения, количественно[1, С.133]

Недостаток степенного уравнения, состоящий в том, что единицы измерения т и у фиксированы, и для материалов с различными п изменяется не только значение \ilt но и единица ее измерения, не является препятствием к применению указанной зависимости. Это еще раз подтверждает, что степенное уравнение не есть единый физический закон, а представляет собой эмпирическую зависимое!ь. Основной недостаток степенного уравнения заключается в том, что при экстраполяции к нулевым или бесконечно большим скоростям сдвига оно не может использоваться, так как предсказывает, соответственно, бесконечную или нулевую вязкость материала. В целом ряде случаев (пленочное течение, свободная конвекция, медленное движение тел в жидкостях) этот недостаток может привести к серьезным погрешностям. Однако в интервале значений напряжений и скоростей сдвига, представляющих наибольший интерес при переработке полимеров, степенной закон описывает поведение полимерных систем с достаточной точностью и хорошо согласуется с опытными данными при изменении скорости сдвига резиновых смесей на три-четыре порядка. На рис. 1.2 и 1.3 представлены экспериментальные данные по исследованию процесса течения каучуков и резиновых смесей. Следует отметить, что для чистых каучуков в декартовой системе координат с логарифмическим масштабом зависимость напряжения сдвига от скорости сдвига не является линейной (рис. 1.З.). В литературе приводятся численные значения констант степенного уравнения (1.2) для многих каучуков и резиновых смесей. В зависимости от состава смеси и температуры исследования значения \1г меняются в диапазоне от 0,01 до 0,3 МП а с", а константы п — в диапазоне от 0,15 до 0,8. Для инженерных расчетов в качестве первого приближения можно принять, что индекс течения п не зависит от температуры, если интервал ее изменения не превышает 30 °С. При скорости сдвига 100 с"1 индекс течения п с изменением температуры от 38 до 93 °С меняется для бутадиен-стирольного каучука GR-S[5, С.20]

Реологические свойства характеризуют поведение полимерных систем при деформировании. Они определяют зависимость между напряжениями, деформациями и скоростями деформаций. Эти зависимости, измеренные при различных температурах для полимеров разного молекулярного веса и полимерных систем разного состава, дают важную информацию об их структуре и структурных превращениях.[6, С.241]

Поведение полимерных смесей при горении[3, С.34]

Поведение полимерных материалов при циклических напряжениях описывается усталостными кривыми, построенными в координатах логарифм числа циклов—разрушающее напряжение. Предел выносливости всегда меньше разрушающего напряжения (аг < о)[9, С.99]

Тепловое поведение полимерных материалов является их важнейшей характеристикой, определяющей выбор пластмасс и их эффективное использование. Большинство пластиков отчетливо реагирует на, как принято говорить, температуру. Причина этого заключается в цепном макромолекулярном строении полимеров. Чем подвижнее кинетические фрагменты макромолекул, тем рельефнее их реакция на интенсивность теплового поля. Подвижность же макроцепей и, следовательно, температурная деформируемость и прочность определяются химическим строением, физической организацией полимеров (кристаллические или аморфные), морфологией их надмолекулярной структуры (пачечная, фибриллярная, сферолит-ная, сетчатая), видом и интенсивностью межмолекулярных связей и, наконец тем, к какому классу полимеров (термопластичным или термореактивным) они относятся.[9, С.103]

Бесспорно, поведение полимерных цепочек, растущих с поверхности катализатора в газообразной или жидкой фазе, представляет интерес как с точки зрения механизма кристаллизации, так и с точки зрения механизма каталитического действия катализатора, однако для' исследователя, по-видимому, будет нелегко согласиться с мнением о том, что макромолекулы просто вытягиваются вверх, удаляясь от активной поверхности катализатора. Действительно, ни картина, нарисованная Келлером [15], ни рассуждения Менли [13] не согласуются с тем обстоятельством, что присоединение мономера к растущей цепи проходит через стадию адсорбции на поверхности катализатора [29]. Концентрация активных центров на поверхности, разумеется, является важным фактором, однако следует принимать во внимание как возможность образования новой поверхности в результате растрескивания катализатора, так и вероятность миграции самой макромолекулы.[13, С.277]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
8. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
9. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
10. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
11. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
12. Виноградов Г.В. Реология полимеров, 1977, 440 с.
13. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
14. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
19. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
23. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную