На главную

Статья по теме: Поверхности материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Трещины серебра начинают расти на поверхности материала или на границе концентрации напряжений, где при локализованном пластическом течении вследствие сильно неоднородного в молекулярном масштабе пластического сдвига образуются микрополости[1, С.372]

Отжатую щелочную целлюлозу измельчают для увеличения поверхности материала, доступной для кислорода воздуха и сероуглерода при ксантогенировании. При измельчении щелочной целлюлозы уже происходит довольно интенсивная окислительная деструкция.[6, С.588]

Два других метода плавления основаны на подводе тепла к поверхности материала и гравитационном оттоке расплава. Высокая вязкость расплавов полимеров не способствует гравитационному удалению расплава. Однако эти методы могут применяться в двух случаях: а) когда нет необходимости удалять расплав и б) когда удаление расплава происходит при помощи механической силы. Случай «а» относится к таким процессам, как ротационное формование, при котором спекается порошок полимера, и термоформование, когда лист размягчается под действием тепла. Тепло подводится к материалу либо в результате прямого контакта с горячей поверхностью, либо путем конвекции или радиации. Характерная особенность плавления в этом случае состоит в том, что в результате получается готовое изделие или полуфабрикат. Случай «б» используется для получения большого количества расплава от спрессованной порции гранулята для последующего формования (например, при литье под давлением или горячем штамповании).[2, С.254]

По-видимому, наиболее целесообразно использовать для установления надмолекулярной структуры полимеров совокупность методов. Например, с помощью установки, состоящей из электронного растрового микроскопа и рентгеновского спектрометра, для смесей типичных промышленных каучуков были идентифицированы составляющие, включения, наслоения на поверхности материала, а также исследованы свойства на границе раздела различных веществ, в том числе каучука с металлами и текстилем [16].[5, С.359]

И, наконец, следует упомянуть об угле естественного откоса, который определяет статическое равновесие в покоящемся рыхлом материале. Единственный общепринятый метод измерения угла естественного откоса основан на свободном вытекании материала из небольшого отверстия на плоскую горизонтальную поверхность. Угол наклона к горизонтали свободной поверхности материала и есть угол естественного откоса. Имеется много других методов измерения угла естественного откоса, но все результаты незначительно[2, С.230]

В этой системе уравнений учитывается теплопроводность в продольном направлении, тогда как в уравнении (14.2-22) этой величиной пренебрегли, полагая ее слишком малой по сравнению с локальным теплопереносом в продольном направлении. Оба приведенные выше уравнения справедливы при значениях t^.tim. Температурные условия на границе адиабатической поверхности материала имеют следующий вид:[2, С.547]

Пенетрометры. Деформируемость пласто-эластичного материала может быть оценена по глубине вдавливания индентора при строго определенных нагрузке, продолжительности ее приложения и температуре, а эластичное восстановление — по глубине погружения индентора через определенное время после снятия нагрузки. Методы, основанные на этом принципе, дают возможность получать лишь условные показатели, зависящие от ряда факторов — величины и формы индентора, рельефа поверхности материала, трения между индентором и материалом, влияния твердой подложки и др,[3, С.34]

Хорошо известно, что при введении в полимер наполнителя, нанесении его на твердую подложку или заливке в какую-либо форму его усадка и термическое расширение уменьшаются. Если полимер находится в жидком состоянии, то сокращение объема происходит за счет течения полимера и уменьшения общего объема системы или возникновения пористости. Как показано в предыдущей главе для эпоксидных смол, в жидком состоянии в зависимости от типа смолы и условий отверждения в некоторых случаях более половины полной усадки. Если наполнитель достаточно плотно упакован и не может деформироваться вместе с матрицей, образуя пространственный каркас с некоторой эффективной жесткостью, происходит «всасывание» его с поверхности материала. При формировании пропитанного эпоксидной смолой материала в замкнутой форме часто образуются поры, причем пористость равна объемной усадке в жидком состоянии, т. е. составляет около 2—3% (см. гл. 3). Плотность отверждающегося полимера при этом остается такой же, как и у ненаполненного полимера.[7, С.91]

Физико-химические воздействия жидких сред могут повлиять на начало роста, распространение или разрыв трещины серебра в термопластичном полимере. По-видимому, жидкость должна диффундировать в полимер, чтобы повлиять на начало роста трещины серебра. Нарисава [119] определил критические напряжения а, образования таких трещин в тонких пленках ПС и ПК, находящихся в контакте с различными спиртами и углеводородами. Он наблюдал, что трещины серебра появляются без существенной задержки по времени и что а/ уменьшается с уменьшением длины цепи растворителя (от 45 до 20 МПа для ПС, от 70 до 50 МПа для ПК). На основании этих результатов он пришел к выводу, что слабое набухание микроскопического слоя поверхности материала является необходимым и достаточным условием, чтобы вызвать образование трещин серебра. Тот же автор получил критерий для а/ в виде выражения (8.29) со значениями активационных объемов 1,0—1,3 нм3, энергий активации 109—130 кДж/моль и констант скорости (1 — 10)-Ю-38 с-1 для ПС и (2—50)-Ю-45 с-1 для ПК.[1, С.386]

Металлиэируемость — свойство поверхности материала образовывать достаточно прочное и стабильное в условиях эксплуатации сцепление со слоем металла при нанесении его тем или иным способом.[9, С.61]

Метод модифицирования свойств поверхности материалов прививкой обладает большими возможностями, еще мало изученными и практически не используемыми. Синтез на поверхности материала слоя привитых (связанных химически с поверхностью) макромолекул позволяет получать комбинированные материалы (волокна, пленки), химический состав и структуру которых в объеме и на поверхности можно варьировать так, чтобы обеспечить желаемое сочетание объемных и поверхностных свойств, не встречающихся у обычных природных и промышленных материалов.[14, С.605]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
4. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
8. Серков А.Т. Вискозные волокна, 1980, 295 с.
9. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
12. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
13. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
14. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
15. Северс Э.Т. Реология полимеров, 1966, 199 с.
16. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
17. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
18. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
19. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
20. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
21. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
22. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
23. Бажант В.N. Силивоны, 1950, 710 с.
24. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
25. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
26. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
27. Лельчук В.А. Поверхностная обработка пластмасс, 1972, 184 с.
28. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.

На главную