На главную

Статья по теме: Растворителя оказывает

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Данные вискозиметрических измерений, представленные на рис. 3 и 4, убедительно свидетельствуют о том, что характер растворителя оказывает огромное влияние на свойства концентрированных растворов полимеров. Этот вывод существенно' отличается от часто выражаемого мнения о том, что роль природы растворителя нивелируется в области высоких концентраций, поскольку полимер равномерно заполняет весь объем и растворитель перестает РЛИЯТЬ на размеры и конформацию мак-ромолекулярной цепи. Хотя данные, подобные представленным' на рис. 3 и 4, иногда приводились в литературе [14, 19а], масштаб эффектов, связанных с ролью природы растворителя, вряд-ли был оценен правильно.[6, С.227]

При проведении реакции в растворителях, способных образовывать более прочные комплексы с литием, чем мономер, предварительная координация присоединяющегося мономера оказывается невозможной, и стереоспецифический эффект пропадает (см. табл. 1.3). Природа растворителя оказывает существенное влияние на структуру получаемых полимеров и при протекании других координационно-ионных процессов.[1, С.27]

Влияние природы растворителя на вязкостные свойства растворов полимеров зависит от рассматриваемой области концентрации *. В области низких концентраций вязкость растворов полимеров в плохих растворителях меньше, но она сильнее изменяется с концентрацией. Поэтому с повышением концентрации вязкость растворов полимеров в плохом растворителе может оказаться выше, чем в хорошем. Природа растворителя слабо влияет на характер зависимости вязкости от молекулярной массы. Для неполярных и слабополярных полимеров, отличающихся высокой гибкостью макромолекул, термодинамическое качество растворителя очень мало влияет на вязкость их растворов. При заданной объемной концентрации таких полимеров разница в вязкости растворов определяется в основном различием значений вязкости используемых растворителей. Качество растворителя оказывает огромное влияние на вязкость растворов жесткоцепных полимеров, причем направление этого влияния существенно различно в области разбавленных и концентрированных растворов.[7, С.210]

Откладывая по оси ординат экспериментально найденные значения [п]/[т|]. а по оси абсцисс М![т\], получим прямую, наклон которой определяет величину Ф, а отрезок, отсекаемый ею на оси ординат, величину at —0,2- Значения сегментальной оптической анизотропии очень чувствительны к изменению структуры цепи полимера. Для различных полимеров величина сц — «2 изменяется в широких пределах и различается по знаку. До последнего времени существовало представление, что эта величина, являющаяся характеристикой гибкости цепи полимера, зависит от строения скелета цепи, природы боковых заместителей, но не зависит от температуры и термодинамического сродства полимера к растворителю. В последние годы Э. В. Фрисман и сотр.Ё показали, что оптическая сегментальная анизотропия зависит от-термодинамического взаимодействия полимера с растворителем, т- е. природа растворителя оказывает влияние на гибкость макромолекул; это подтверждает представления, изложенные в главах XIV—XVII.[3, С.486]

Откладывая по оси ординат экспериментально найденные значения [л)/Гл]> а по оси абсцисс Af/Jrj], получим прямую, наклон которой определяет величину Ф, а отрезок, отсекаемый ею на оси ординат, величину а.\—«г. Значения сегментальной оптической анизотропии очень чувствительны к изменению структуры цепи полимера. Для различных полимеров величина ctj — ctg изменяется в широких пределах и различается по знаку. До последнего времени существовало представление, что эта величина, являющаяся характеристикой гибкости цепи полимера, зависит От строения скелета цепи, природы боковых заместителей, но не зависит от температуры и термодинамического сродства полимера к растворителю. В последние годЬ] Э. В. Фрисман и сотр.& показали, что оптическая сегментальная анизотропия зависит от-термодинамического нзаимодействия полимера с растворителем, т. е. природа растворителя оказывает влияние на гибкость макромолекул; это подтверждает представления, изложенные в главах XIV—XVII.[2, С.486]

В случае пленок из МЭК и ХБ из-за фазового распада гомогенных структур, определяемого по помутнению пленок, зависимости скорости дегидрохлорирования ПВХ от содержания ПММА в смеси приобретают вид, типичный для ингибирования распада ПВХ в присутствии ПММА. Фазовая структура пленочных образцов будет зависеть от соотношения полимеров в смеси, от природы растворителя и режима образования твердой пленки. Фазовая структура данной бинарной системы, как известно [12], может формироваться вдали от равновесия ПВХ-ПММА. По соотношению количеств фаз эта структура определяется наличием равновесия ПВХ-ПММА-растворитель в поле тройной диаграммы в области резкого возрастания вязкости системы, обусловленного либо фазовыми превращениями (распад фаз с образованием твердого осадка), либо стеклованием жидких фаз (релаксационный переход), либо лиотропным гелеобразованием. Разные механизмы стабилизации надмолекулярных структур ПВХ-ПММА, возникающих при концентрировании растворов в разных растворителях в совокупности с заторможенностью процессов массообмена при разделении фаз и релаксации структурной неравновесности в фазе каждого полимера, приводят в конечном итоге к разным кинетическим зависимостям скорости деструкции твердых смесевых образцов от состава. Переходный слой представляет из себя суперпозицию межфазной границы (сегментальная совместимость компонентов), структурно-возмущенной области (зона значительного конформационного напряжения) и области диффузионного смешения компонентов, что находится в хорошем соответствии с данными работы [15]. Природа растворителя оказывает существенное влияние как на характер распределения концентрации ПВХ, так и на строение зоны сопряженных фаз. При использовании плохого растворителя (толуола) переходный слой представляет собой резкую межфазную границу, в пределах которой наблюдается скачко-[8, С.254]

Критика представлений Зисманадана в работе [10]. Зисман считает, что основной причиной адгезии является наличие силового поля молекул твердой поверхности, которое притягивает молекулы адгезива, и что действие силового поля при этом не зависит от изменений, происходящих в объеме последнего, если они не сопровождаются изменениями плотности или молекулярной ориентации на границе раздела. Однако именно в случае полимеров такие изменения в объеме происходят, поэтому нельзя переносить данные о термодинамической работе адгезии для жидкого адгезива на тот же адгезив после отверждения. Кроме того, для полимеров, как уже было сказано, действие поверхностных сил не ограничивается непосредственным контактом молекулярных слоев с поверхностью, а распространяется от поверхности на значительные расстояния. Таким образом, изменение структуры граничного слоя, происходящее при отверждении или удалении растворителя, оказывает влияние на адгезию.[5, С.14]

Таким образом, качество растворителя оказывает существенное влияние на скорость и количество десорбированного полимера.[4, С.31]

Основные закономерности П. в р. во многэм идентичны общим закономерностям поликонденсации (напр., влияние па процесс соотношения мономеров, колич. монофункциональных добавок, темп-ры реакции и др.), хотя в ряде случаев строение растворителя оказывает существенное влияние на полученные результаты. Б' любой реакционной системе растворитель п большей или меньшей степени влияет на величину мол. массы образующегося полимера и способствует формированию той или иной его структуры.[10, С.434]

Основные закономерности П. в р. во многом идентичны общим закономерностям поликонденсации (напр., влияние на процесс соотношения мономеров, колич. монофункциональных добавок, темп-ры реакции и др.), хотя в ряде случаев строение растворителя оказывает существенное влияние на полученные результаты. В любой реакционной системе растворитель в большей или меньшей степени влияет на величину мол. массы образующегося полимера и способствует формированию той или иной его структуры.[12, С.432]

Дегтева и Кузьминский [206] исследовали окисление набухших в декалине вулканизатов из натрийбутадиенового каучука при 150—155°. Во всех исследованных случаях при окислении наблюдались сопряженные процессы структурирования и де^ струкции. При наличии ингибиторов преобладает деструкция. Природа растворителя оказывает действие на процессы окисления: так, тетралин ускоряет, а декалин замедляет окисление вулканизата полибутадиена [207].[11, С.503]

1. Показано, что природа растворителя оказывает существенное влияние на структуру аморфного изотактического полистирола.[9, С.184]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
4. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
5. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
6. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
7. Виноградов Г.В. Реология полимеров, 1977, 440 с.
8. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
9. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
10. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
11. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
12. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную