На главную

Статья по теме: Различных макромолекул

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

П. могут сопутствовать реакции между функциональными группами различных макромолекул и побочные реакции, препятствующие циклизации в данном звене (в обоих случаях образуется полимерная цепь с «дефектами»). При синтезе термостойких полимеров особенно важно добиться максимально возможной глубины циклизации, т. к. дефектные участки цепи деструктируются, как правило, в первую очередь.[9, С.43]

Во время набухания полимера в пластификаторе.сравнительно небольшие молекулы последнего, диффундируя в полимер, раздвигают макромолекулы, окружают их мономолекулярным слоем и экранируют полярные группы. Взаимодействие между звеньями различных макромолекул заменяется взаимодействием этих звеньев с молекулами пластификатора. В результате появления промежуточного слоя пластификатора в значительной степени прекращается непосредственное соприкосновение макромолекул между собой; вместо этого наблюдается соприкосновение между молекулами пластификатора, легче передвигающимися относительно друг друга. Именно поэтому пластификатор всегда увеличивает пластичность и текучесть полимера (снижает Ттек) *•[6, С.510]

Химические реакции. Как известно, химические превращения полимеров позволяют получать новые классы высокомолекулярных соединений на основе готовых макромолекул. В химии высокомолекулярных соединений различают реакции звеньев полимерной цепи и макромолекулярные реакции. Первые приводят к изменению химического состава полимера без изменения степени полимеризации. Такие реакции называют полимераналогичными превращениями или реакциями в цепях полимеров. Макромолекулярные реакции всегда приводят к изменению степени полимеризации, а иногда и строения основной цепи полимера. К ним относятся реакции деструкции и межмолекулярные реакции (сшивание), в результате которых образуются пространственные структуры. Сшивание может быть осуществлено как за счет реакций функциональных групп или двойных связей в звеньях различных макромолекул, так и путем обработки линейных полимеров низкомолекулярными веществами (сшивающими агентами).[2, С.112]

Межмолекулярные реакции - реакции взаимодействия функциональных групп различных макромолекул друг с другом.[1, С.401]

Различают два типа процессов сшивания полимеров. При одном из них образование поперечных связей приводит к увеличению длины основных цепей макромолекул аналогично тому, как это имеет место при полимеризации; при другом — поперечные связи, образующиеся между двумя элементарными звеньями различных макромолекул (или между звеньями одной и той же цепи), препятствуют перемещению макромолекул относительно друг друга.[7, С.214]

Возможность исследования поведения фактически изолированных друг от друга макромолекул в очень разбавленных растворах стимулировала в течение многих лет попытки изучения деталей их цепного строения путем определения радиуса инерции в различных растворителях и при различных температурах и сравнения поведения различных макромолекул в одном и том же растворителе. Статистическая термодинамика полимерных растворов в своей ранней форме выявила принципиальную зависимость некоторых определяемых величин от степени -сольватации свернутой случайным образом полимерной молекулы, например величины второго вириального коэффициента в выражении для осмотического давления, константы седиментации, константы диффузии и удельной вязкости как функции концентрации [1]. Показано также, что экспонента а в известном соотношении между молекулярным весом и характеристической вязкостью и параметр Хаггинса /с', по-видимому, каким-то образом зависят от деталей структуры цепи. Однако установленные зависимости носили полуэмпжрический и качественный характер и их нельзя было оценить однозначно. Точно так же более ранние попытки трактовать существующие противоречия в поведении полистирола в растворе не основывались на надежных методах, достаточных для убедительного доказательства наличия разветвлений или макромолекулярной изомерии другого типа [2]. Трудно было даже установить в растворах наличие цис-транс-изомерии молекул, которая, как известно, преобладает в случае натурального каучука и гуттаперчи. Исследование этих двух природных полимеров в твердом состоянии привело ранее к установлению того факта, что каучук представляет собой почти целиком цис-1,4-полиизопрен, тогда как гуттаперча и другие смолообразные полимеры того же происхождения состоят все из транс-i ,4-цепей. Это различие в молекулярной структуре вызывает разную способность молекул к упаковке в конденсированном состоянии и приводит к заметно различному характеру твердой фазы, в том числе к различиям в структуре решетки, плотности, температуре плавления, теплоте плавления и т. п. Вследствие этого, когда раствор полимера находится в контакте с твердой фазой, такие показатели, как степень и скорость растворимости, степень и скорость набухания, различны для цис- и тпранс-изомеров. Однако при сравнении поведения изолированных макромолекул двух изомеров в очень разбавленных растворах не удается обнаружить каких-либо заметных различий в таких величинах, как значение второго вириальпого коэффициента для приведенного осмотического давления или для удельной вязкости как функции концентрации.[10, С.87]

Как уже отмечалось, неограниченная взаимная растворимость полимеров — очень редкое явление. В определенных условиях она достигается, напр, при смешении поливинилхлорида и бутадион-нитрильного каучука (СКН-40), поливинилацетата и нитроцеллюлозы. Менее всего способны образовать однофазную смесь кри-сталлич. полимеры; при темп-ре ниже темп-ры плавления существование такой смеси означало бы совместную кристаллизацию различных макромолекул, изоморфизм же в кристаллич. полимерах наблюдается крайне редко.[9, С.217]

Низкомолекулярные полисилоксаны представляют собой масло-или воскоподобные вещества, в то время как высокомолекулярные продукты очень эластичны: путем сшивания их можно превратить в силиконовый каучук. На практике силиконы сшивают перекисями (см. опыт 4-17), которые, по-видимому, отрывают атомы водорода от метальных групп, образуя углеводородные радикалы вдоль макромолекулы полисилоксана. При рекомбинации углеводородных радикалов различных макромолекул происходит сшивание за счет образования С—С-связей.[5, С.219]

Выше отмечалось,, что упругость каучука и других эластом,еров очень напоминает упругость газов. Вместе с тем многие свойства полимеров в высокоэластическом состоянии сходны со свойствами жидкостей (характер теплового расширения * и сжимаемости, диффузия низкомолекулярных веществ в полимерах) и твердых тел (механическая прочность, устойчивость формы). Кроме того, высокоэластическая деформация каучукоподобных полимеров, обусловленная слабым взаимодействием между звеньями различных макромолекул и подвижностью самих звеньев, напоминает течение обычной жидкости с тем различием, что наличие сшитых участков препятствует взаимному смещению целых цепей.[6, С.383]

Рис. 2. Схема распределения сегментов различных макромолекул в переходном слое, образовавшемся на границе контакта двух полимеров.[9, С.217]

Рис. 2. Схема распределения сегментов различных макромолекул в переходном слое, образовавшемся на границе контакта двух полимеров.[12, С.217]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
3. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
4. Смирнов О.В. Поликарбонаты, 1975, 288 с.
5. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
6. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
7. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
8. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
11. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
12. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.

На главную