На главную

Статья по теме: Различных молекулярных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В работе [96] смесь полистирола различных молекулярных весов хроматографически фракционировали на колонке, заполненной активированным углем. Раствор смеси полистиролов различного молекулярного веса заливали в колонку и затем вымывали растворителем. При использовании того же растворителя (метилэтилкетона), в котором растворяли полистирол, вымывание полимера не происходило. Толуол — лучший растворитель — позволил вымыть полистирол малого молекулярного веса. Самый лучший растворитель из исследованных — тетралин — вымывал 77% полимера. Наблюдаемое фракционирование можно приписать более слабым связям низкомолекулярных фракций с твердой поверхностью, или более быстрой растворимостью низкомолекулярных фракций в растворителе, или[8, С.62]

Конечно, значительно более общее описание различных молекулярных областей и их ориентации получается с помощью трехмерных элементов. В случае поперечной симметрии молекулярные элементы должны определяться пятью константами упругости (или податливостями), ориентацией в одном или двух направлениях и граничными условиями для напряжения и деформации на границе элемента. Фохт [63] исходил в своих расчетах из предположения отсутствия разрыва деформации на всех границах. Реусс [64] предполагал однородность напряжения. Используя пространственное усреднение констант упругости Cijmn или податливостей sijmn молекулярных областей по Фохту или Реуссу, соответственно получают верхний и нижний пределы макроскопического модуля [83]. Для пространственной деформации совокупности таких элементов Уорд [84], а позднее Кауш [85] рассчитали зависимости макроскопических модулей упругости от ориентации областей. Расчетные кривые изменения модулей упругости от коэффициента вытяжки, в частности, характеризуются скоростью начального изменения модуля и его предельным значением. Если при вытяжке происходит только переориентация неизменных в других отношениях молекулярных областей, то свойства «полностью» ориентированного образца должны соответствовать свойствам этих областей. На рис. 2.16 модуль Юнга, рассчитанный в направлении вытяжки в зависимости от коэффициента вытяжки и анизотропии областей, сравнивается с экспериментальными данными [13, 85]. Результаты Уорда и Кауша можно обобщить следующим образом:[2, С.48]

В сложных полимерных системах, состоящих из различных молекулярных групп, с изменением температуры кроме процесса образования «дырок» могут идти процессы обратимого и необратимого структурирования и изменения типа межмолекулярных взаимодействий, которые подчиняются уравнениям второго и высших порядков. Это приводит к более сильной температурной зависимости энергии активации .и физических свойств в области стеклования.[3, С.41]

Для выяснения величины относительного влияния различных молекулярных параметров на эластические свойства резин, можно сравнить резины, полученные на основе каучуков с различной температурой стеклования. Данные, приведенные в табл. 5, показывают, что при равной плотности эластически эффективных узлов сетки вулканизаты, полученные на основе линейных каучуков, с[1, С.90]

При изучении многими методами микроструктуры смешанных в расплаве термодинамически несовместимых полимеров ПЭ и ПС различных молекулярных масс при всевозможных соотношениях компонентов было установлено [428], что степень дисперсности частиц в двухфазной системе определяется не" химической природой дисперсной фазы, а различием в реологических свойствах и и составе фаз. Чем больше различие в вязкости и высокоэластичности компонентов, тем сильнее влияние состава смеси на ее дисперсность. Основные закономерности формирования структуры в смеси расплавов сводятся к следующему: если вязкость и высокоэластичность компонента, количество которого недостаточно, значительно больше, чем основного компонента, то образуется грубодисперсная композиция; если, наоборот, меньший .компонент хорошо распределяется в системе. Если вязкости компонентов близки, то образуется высокодисперсная смесь независимо от того, какой компонент является дисперсной фазой, какой — дисперсионной средой. Образование взаимопроникающей двухфазной структуры возможно только в том случае, когда соотношения между вязкостью и высоко-[9, С.214]

Исследовали образцы (СН3)(С6Н5)ПОФ трех различных молекулярных весов. Характеристические вязкости [T|] их растворов в хлороформе при 25°С составляли 0,63, 0,88 и 1,56. Данные по временным зависимостям релаксационного модуля обрабаты-[12, С.133]

Каждый полимер был представлен образцами двух различных молекулярных весов, что позволило провести измерения как для растворов, в которых отсутствуют молекулярные «зацепления», так и для систем, где такие «зацепления» существуют. Образцы полистирола представляли собой монодисперсные полимеры, а исследованные образцы полиметилметакрилата были узкими фракциями, полученными фракционированием полимера[12, С.220]

Изучение зависимости деформаций полиизобутиленов различных молекулярных весов от температуры и частоты воздействия силы производилось при помощи прибора Александрова—Гаева. Подробное описание этого прибора дано в работе Лазуркина [3].[16, С.248]

Дальнейшие представления о структуре адсорбционного слоя были развиты Пататом и сотрудниками в ряде работ, посвященных адсорбции полистирола и поливинилпирролидона различных молекулярных весов на разнообразных сорбентах (881. Их представления также основываются на несоответствии экспериментально найденных значений адсорбции и вычисленных в предположении образования монослоев. Авторы также рассматривают модель адсорбционного слоя в виде «щетины» и модель адсорбированных макромо-лекулярных клубков. В первом случае на основании данных о межатомных расстояниях можно вычислить площади, занимаемые сегментом молекулы, и на этом основании рассчитать величины адсорбции и теоретический вес адсорбционного слоя. Во втором случае площадь, занимаемая макромолекулой, определяется как F0 = = (/гда/2)а я. Для образования мономолекулярного слоя площадью А0 нужно Nm = AO/FO макромолекул. Отсюда вес слоя[8, С.81]

Пользуясь функцией TI (с), во многих случаях удается получить инвариантные вязкостные характеристики растворов для широкого круга полимеров *. Для каждого растворителя и полимергомологов различных молекулярных масс получается инвариантная — обобщенная характеристика вязкостных свойств растворов. Для гибко-цепных полимеров она может охватывать область от предельно разбавленных растворов до полимеров в блоке. Для жесткоцепных полимеров обобщенная характеристика может быть построена от области предельно разбавленных растворов до концентраций, при которых наблюдается особенно быстрое увеличение вязкости из-за перехода в стеклообразное состояние.[13, С.213]

Графики потенциалов, соответствующие различным возбужденным состояниям молекулы €2, иллюстрируют влияние электронного возбуждения на энергию связи (рис. 4.2). Обращает на себя внимание тот факт, что значения энергии диссоциации различных молекулярных состояний заключены в интервале (120—350) кДж/моль. Подобные энергии диссоциации, как правило, меньше разности энергии, необходимой для возбуждения электрона. Возбужденные состояния (многоэлектронного) атома С обозначаются, как обычно, S, P, D. Поскольку два возбужденных атома можно объединить несколькими способами, существует больше чем одно молекулярное состояние, соответствующее любым двухатомным состояниям.[2, С.109]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
5. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
6. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
7. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
8. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
9. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
10. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
11. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
12. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
13. Виноградов Г.В. Реология полимеров, 1977, 440 с.
14. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
15. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
16. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
17. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
18. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
19. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
20. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
21. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
22. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
23. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
24. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
25. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
26. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
27. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
28. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
29. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную