На главную

Статья по теме: Способность растворяться

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Достаточно ввести в реакцию незначительное количество серы (0,8—2,5%), чтобы полимер потерял способность растворяться, сохранив лишь некоторую набухаемость, приобрел во много раз большую прочность при растяжении и превратился из пластичного материала в высокоэластичный. Такое резкое изменение свойств полимера нельзя объяснить появлением в нем полярных групп, так как количество их слишком мало. Оно может[2, С.244]

Полимеризацию аллилакрилата и аллилметакрилата м<-жн<» проводить в две стадии. В первой стадии образуется еще низко-молекулярный голимер, сохраняющий способность растворяться в исходном мономере, поэтому полимеризующаяся масса представляет собой вязкий раствор низкомолекулярного полимера в мономере. Добавлением ингибитора реакции полимеризации можно задержать процесс на первой стадии. Дальнейшая полимеризация (вторая стадия) приводит к образованию макромолекул пространственного строения. В реакции полимеризации принимает участие низкомолекулярный полимер (полимеризующийся за счет оставшихся в нем двойных связей) и мономер, присутствующий тз системе. Во второй стадии процесса образуется нерастворимый гель. Величина и разветвленность макромолекул возрастают по мере увеличения продолжительности реакции, одновременно нарастает и твердость полимера.[2, С.313]

Полимер утрачивает способность растворяться вдиметилформ-амиде и становится растворимым в воде. Количество связанного азота в нем составляет всего 0,5%.[2, С.335]

В начальных стадиях поликонденсации полимер имеет линейную структуру и сохраняет способность растворяться в бензоле, толуоле, хлорбензоле. После удаления растворителя остается твердая стекловидная пленка. В полимере содержится 13,15% алюминия и 18,56% кремния. При дальнейшем нагревании полимера без добавления воды происходит частичное разрушение кремний-углеродной связи[2, С.502]

В результате введения метилольных групп повышается адгезия полиамида к различным материалам, в том числе к металлам, коже, силикатному стеклу, полимер приобретает способность растворяться в спирто-водной смеси (растворимость утрачивается только после образования сетчатого полимера), увеличивается эластичность полиамидной пленки и ее кислотостон-кость.[2, С.453]

Полученный полимер представляет собой своеобразный сополимер аллилхлорида с четвертичным аммониевым основанием. Присутствие звеньев аммониевого основания в полимере придает ему способность растворяться в воде.[2, С.278]

Образовавшиеся при фотолизе хинондиазидов замещенные инденкарбоновой кислоты способны при нагревании декарбоксилироваться, участки слоя с введенными в него производными индена теряют способность растворяться в щелочах. Тем самым создается возможность обращения материала — превращения позитивного слоя в негативный. Модификация обработок слоя позитивного хиноидиазидного резиста для создания негатива позволяет получить лучшее разрешение и меньшее число дефектов в негативе, чем в случае слоя на основе собственно негативных резистов. Кроме того, позитивные фоторезисты менее чувствительны к кислороду, чем негативные, что упрощает технологию. Наконец, использование обращаемой системы избавляет от необходимости иметь запас реактивов и материалов для различающихся по материалам и обработкам собственно негативных и позитивных композиций.[10, С.89]

Еще в 1966 г. Дельзен и Ларидон наблюдали, что слой, состоящий из близких массовых количеств НС и содержащего орто-нитрогруппу фенилсульфинилкарбоксилата в местах экспонирования приобретает способность растворяться в водно-спиртовом растворе щелочи [пат. Великобритании 1158843]. Очевидно, это соединение аналогично кислоте Мельдрума, нафтохинондиазидам и другим рассмотренным выше веществам (см. гл. II) ингибирует растворение НС в щелочи, а после фотохимической перегруппировки и гидролиза, когда образуются замещенная о-нитрофенил-сульфиновая кислота и соответствующая карбоновая кислота, это ингибирование снимается.[10, С.184]

Величина молекулярного веса определяет свойства данного высокополимерного соединения, в частности предел его прочности при растяжении, температурные пределы плавления, эластичности и текучести, способность растворяться и вязкость растворов полимера.[2, С.12]

Тэта-температура (температура Флори, 0-температура) - температура, при которой взаимодействие между полимером и растворителем отсутствует. Клубки макромолекул имеют невозмущенные размеры (см.). Ниже этой температуры полимер теряет способность растворяться.[1, С.406]

Простые эфиры целлюлозы в настоящее время приобрели большое практическое значение. К достоинствам простых эфиров целлюлозы относятся: устойчивость к действию химических реагентов, водостойкость, морозостойкость, светостойкость, термостойкость, малая горючесть, способность растворяться в распространенных органических растворителях, хорошие пленкообразующие и термопластические свойства и др. Некоторые простые эфиры целлюлозы при определенной степени замещения могут растворяться не только в органических растворителях, но и в разбавленных водных растворах щелочи и даже в холодной воде. Это также играет важную роль в их применении.[9, С.608]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Белозеров Н.В. Технология резины, 1967, 660 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
8. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
11. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
12. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
13. Сидельховская Ф.П. Химия N-винилпирролидона и его полимеров, 1970, 151 с.
14. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
15. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
16. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
17. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
18. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
19. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
20. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
21. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
22. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
23. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
24. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
25. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
26. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
27. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
28. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную