На главную

Статья по теме: Существенная зависимость

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Существенная зависимость вязкостных свойств концентрированных растворов и расплавов полимеров от геометрических размеров капилляров (длины / и радиуса R) иллюстрируется рис. 4.9.[1, С.178]

Произведем дальнейшее небольшое упрощение. Предположим, что существенная зависимость от времени содержится в части < w > корреляционной функции, тогда как часть < с с > может быть взята в одно и то же время. Это упрощение может быть обосновано, если произвести подробный анализ динамики фактора < с с >, используя соображения разд. 6.2.2:[8, С.194]

В заключение мы хотим подчеркнуть, что особенностью высокополимеров является существенная зависимость физических свойств не только от химического строения и размера молекулы, но и от ее конфигурации. Действительно, если бы имелось вещество с очень большими жесткими молекулами, не изменяющими своей конфигурации при фазовых переходах, растворении, наложении силовых полей и пр., то его физические свойства в[6, С.223]

Таким образом, одной из главных особенностей механических свойств эластомеров, общей для каучуков и резин и отличающей их от упругих твердых тел, является существенная зависимость напряжения от времени действия силы или скорости деформации, т. е. известное явление релаксации напряжения или деформации. Зависимость напряжение—деформация носит сложный релаксационный характер. В свою очередь релаксационные свойства зависят от тем-[3, С.14]

Средневзвешенная молекулярная масса Mw может быть вычислена из данных, полученных при исследовании гидродинамических свойств разбавленных растворов полимеров (вискозиметрия, диффузия, ультрацентрифугирование), а также их оптических свойств (светорассеяние). Для молекулярных масс, определенных гидродинамическими методами, характерна существенная зависимость полученных значений Mw от степени полидисперсности высокомолекулярного соединения и от применяемого растворителя. Отсюда возникает возможность оценки полидисперсности по результатам изучения гидродинамических свойств в различных растворителях. Применение гидродинамических способов определения Mw требует предварительной калибровки по молекулярным массам. Метод светорассеяния является абсолютным.[1, С.31]

Так как полимерные материалы часто используются в узлах трения и в качестве покрытий, большое практическое значение имеет изучение механизмов их трения и износа. Процессы трения низкомолекулярных 'твердых тел и полимеров при разных температурах имеют и общие черты, и существенные отличия. Наиболее специфично проявляется трение у полимеров, находящихся в высокоэластическом состоянии. Существенная зависимость характера изменения силы трения при разных скоростях скольжения свидетельствует о релаксационном характере этого процесса. Важное значение имеет правильный учет площади фактического контакта при изменении взаимного расположения трущихся поверхностей. Наиболее резкие изменения трение претерпевает в областях кинетических (стеклование, размягчение) и фазовых (кристаллизация, плавление) переходов, что связано с изменением его механизма. Трение полимеров всегда связано с их износом. При этом износ может рассматриваться как процесс, характеризующий усталость поверхностных слоев полимеров (аналогично тому, как длительное разрушение характеризует объемную усталость). Механизмы износа твердых полимеров и эластомеров, как и характер их внешнего проявления, существенно отличаются.[2, С.384]

Несмотря на то что предложенное Смитом описание кривой напряжение — деформация имеет весьма ограниченную сферу приложения в связи с малой величиной областей линейного вязкоупругого поведения застекло-ванных полимеров, его представления о необходимости точно измерять форму кривой и о возможности построения обобщенных кривых, выражающих зависимость напряжения при заданной деформации от скорости деформации и температуры, имеют общее значение и поэтому получили дальнейшее развитие. Так, для ряда материалов, у которых выявлена существенная зависимость параметров релаксационных процессов от величины деформации, что свидетельствует о выходе за пределы линейной вязкоупругости, были получены обобщенные кривые, выражающие изменение напряжения при заданной деформации в широком диапазоне температур [2].[5, С.200]

Когда структура полимера становится однородной, при низких скоростях происходит медленное течение и перемещение центров тяжести макромолекул, как у простых жидкостей, а при больших напряжениях Р оно распределяется по узлам структуры, вызывая, как и у резины, скольжение по стенкам (при этом критическое значение \>к зависит от М). В случае полидисперсного полимера картина будет иной, но также имеет место проявление критического напряжения Рк. Для линейных полимеров характерна сложная зависимость вязкости от М, причем значения ц при значениях М ниже и выше Мк отличаются. Сверханомалия вязкости отчетливо проявляется в случае узких распределений М, а для полимеров с широким распределением молекулярной массы проявляется существенная зависимость y=f(M) и более размытое явление сверханомалии [6.7]. При этом и для последних существует критическое напряжение, выше которого установившееся течение становится невозможным.[2, С.156]

калия—бисульфит натрия была обнаружена [13]; существенная зависимость скорости полимеризации на частицу при постоянном соотношении мономера и полимера 'как от количества инициатора, так и от скорости перемешивания. Это объяснялось протеканием реакции не только в частицах, но и на границе капель мономера с водной фазой, а также соеущество!ванием нескольких растущих радикалов в одной частице на сравнительно ранних стадиях процесса.[4, С.227]

где I — поляризованная молекула, П — ионная пара, III — свободные ионы. Этим обусловлена существенная зависимость кинетики А. п. и микроструктуры образующихся полимеров от свойств реакционной среды и компонента В (противоиона).[7, С.75]

где I — поляризованная молекула, II — ионная пара, III — свободные ионы. Этим обусловлена существенная зависимость кинетики А. п. и микроструктуры образующихся полимеров от свойств реакционной среды и компонента В (противоиона).[9, С.72]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
4. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
5. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
6. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
7. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
8. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
9. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную