На главную

Статья по теме: Температуры Испытания

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Повышение температуры испытания стекол сопровождается снижением показателей прочностных свойств — разрушающего напряжения при растяжении и статическом изгибе, модуля упругости при растяжении. Значение ударной вязкости остается практически постоянным. При температурах, близких к температурам размягчения стекол, ударная вязкость и относительное удлинение при разрыве резко возрастают, а все другие прочностные показатели уменьшаются.[14, С.215]

Постоянная Ь не зависит от температуры испытания и режима нагружения резины и, следовательно, от частоты деформаций v. Если, учитывая равенство N — YZ', положить т—Ь и С'—vB', го легко видеть, что формулы (VIII. 2) и (VIII. 4) выражают один и тот же закон динамической усталости резины. Так как постоянная С не зависит, а динамический модуль слабо зависит от частоты в исследуемой области частот (50—500 мин'1), то постоянная /?'--C?*/v, в этой же области частот обратно пропорциональна ча-[9, С.207]

Величина сгр при понижении температуры испытания при большой скорости деформации (28,22 м/с) монотонно возрастает, а при меньшей скорости (7,83 м/с) проходит через минимум. Время до разрушения при обеих испытанных скоростях деформации, также изменяется с температурой немонотонно — проходит через максимум. С увеличением скорости деформации время до разрушения значительно сокращается. Относительное удлинение проходит через максимум при температурах от 273 до 293 К. Немонотонное изменение разрушающего напряжения, относительного удлинения и долговечности сопровождается немонотонным изменением работы деформации до разрушения. Максимальное значение работы деформации достигается примерно при 253 и 373 К.[11, С.151]

Время нагревания зависит от температуры испытания и начальной температуры образца, его толщины и плотности, теплопроводности резины [определяется составом резины и равна примерно 0,12561 Вт/(м-°С)], коэффициента теплоотдачи от резины к воздуху при отсутствии циркуляции нагретого воздуха [составляет 0,008374 кВт/(м3-°С)]. С применением циркуляции коэффициент увеличивается. При прогреве в термокамере образцы толщиной до 3 мм выдерживают не менее 3 мин, большей толщины—до' 5 мин, но не более 15 мин. Допускается прогрев нескольких образцов одновременно.[7, С.170]

Зависимость усилия разрушения от толщины слоя адгезива с повышением температуры испытания постепенно изменяется (рис. IV.14). Если при температурах от —60 до —24 °С с уменьшением толщины слоя адгезива наблюдался рост разрушающего усилия, то при температуре 22 °С зависимости уже не наблюдается. Это обусловлено затратой работы на деформацию слоя адгезива в сочетании с влиянием масштабного эффекта и действием внутренних напряжений. При низкой температуре проявляются главным образом два последних фактора и значение адгезионной прочности с уменьшением толщины слоя адгезива возрастает.[18, С.170]

При этом вязкоупругость материалов будет возрастать по мере приближения температуры испытания к температуре стеклования Tg. Отсюда необ-:одимо иметь ряд полимерных материалов с заданной Tg, разноудаленной от емпературы испытания.[2, С.255]

Динамические свойства резин не являются стабильными. Результаты испытаний зависят от формы образцов, длительности, амплитуды, частоты и температуры испытания (ГОСТ 23326—78. Методы динамических испытаний. Общие требования).[7, С.138]

Влияние структуры полимера и условий испытаний на прочность. При эксплуатации полимерных изделии их разрешение происходит в самых разнообразных условиях при растяжени г, сжатии, изгибе, срезе, п результате проколов, надрезов, истирания и т. д. Поэтому прочностные свойства характеризуют обычно несколькими показателями, определяемыми при рачных условиях деформирования Поскольку прочность зависит от скорости и температуры испытания, прочностные показатели определяют при постоянных скорости деформирования и температуре. Кратковременную прочность оценивают по разрушающему напряжению при растяжении, сжатии, изгибе, срезе в обычных условиях при невысоких скоростях деформирования («0,001—0,5 м/мин). Для некоторых полимеров определяют сопротивление разрушению при ударных воздействиях нагрузки со скоростью 2 —4 м/с. Этот показатель называется ударной вязкостью {или ударной прочностью). Он представляет собой отношение работы разрушения Аразр к площади попере ного сечения образца 50.[3, С.343]

Для резин, содержащих активные наполнители, увеличение амплитуды, частоты и температуры испытания влияет на результаты испытаний.[7, С.138]

Для оценки зависимости механических свойств резин от температуры важно быстро довести образцы до температуры испытания, не изменяя их исходных свойств. Полученные при этом показатели теплостойкости характеризуют температуростойкость резин. Их сопоставляют с аналогичными показателями, полученными при температуре (23 ± 2) °С, и выражают коэффициентами теплостойкости при заданной температуре для данного физико-механического показателя. В общем виде коэффициент рассчитывают по формуле:[7, С.169]

Прочность при разрыве — напряжение, вызывающее разрушение образца определенной формы н размеров при растяжении с заданной скоростью в условиях постоянной температуры испытания.[6, С.337]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
2. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
5. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
6. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
7. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
8. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
9. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
10. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
13. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
14. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
15. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
16. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
17. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
18. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
19. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
20. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
21. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
22. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
23. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
24. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную