На главную

Статья по теме: Диапазоне скоростей

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В. а. развивается в тем более широком диапазоне скоростей сдвига, чем шире молекулярно-массовоо распределение. Область В. а. расплавов большинства промышленных полимеров находится в интервале напряжений сдвига от ~103 н/м'1 (~104 дин/см") до ~105 н/м* (~10в дин/см*). При больших т развивается неустойчивое точение с изменением механизма деформирования полимеров. Для типичного расплава с вязкостью —105 н-сек/м* (—106 из) В. а. наблюдается в области скоростей сдвига >10~2 сек~1. Для практически монодисперсных полимеров переход от ньютоновского течения при низких скоростях сдвига к неустойчивому режиму течения происходит в очень узкой области[19, С.285]

В- а. развивается в тем более широком диапазоне скоростей сдвига, чем шире молекулярно-массовое распределение. Область В. а. расплавов большинства промышленных полимеров находится в интервале напряжений сдвига от ~Ю3 н/м2 (~104 дин/см2) до —105 н/м2 (~106 дин/см2). При больших т развивается неустойчивое течение с изменением механизма Деформирования полимеров. Для типичного расплава с вязкостью — 10s н-сек/м3 (~106 пз) В. а. наблюдается в области скоростей сдвига >10~2 сек-1. Для практически монодисперсных полимеров переход от ньютоновского течения при низких скоростях сдвига к неустойчивому режиму течения происходит в очень узкой области[21, С.282]

Грегори и Ватсон [117, 121 — 123] провели широкие исследования течения нолиэтилентерефталата в капиллярном вискозиметре. В диапазоне скоростей сдвига от 50 до 1000 с'1 расплав полиэтилентерефталата ведет себя как ньютоновская жидкость, а при скоростях сдвига 1000 — 24 000 с'1 — как псевдопластичная жидкость. Зависимость динамической вязкости расплава от температуры и среднемассовой молекулярной массы выражается следующим уравнением:[5, С.140]

Продольному течению противодействуют силы поверхностного натяжения и обратимые компоненты деформации; поэтому реализовать его возможно лишь во вполне определенном диапазоне скоростей растяжения и температур. В кристаллизующихся полимерах осуществить продольное течение можно лишь при высоких температурах (выше температуры плавления) ji обычно это течение приводит к ориентационной кристаллизации (см. гл. VI).[3, С.7]

Из уравнения (6.3-7) следует, что К ~ 1, однако хорошее совпадение с экспериментальными данными для растворов получается при К = 2, а для расплавов — при К, = 3. Для использования уравнения (6.7-23) необходимо располагать значениями вязкости во всем диапазоне скоростей сдвига О определить экспериментально или рассчитать, используя какие-либо теоретические уравнения состояния (Бёрд использовал модель Керри), но ньютоновскую вязкость надо определять экспериментально. На рис. 6.13 сопоставлены экспериментальные данные для образцов полиэтилена низкой плотности (см. рис. 6.12) с результатами расчета по уравнению (6.7-23). Видно, что расхождение между экспериментом и расчетом очень невелико.[1, С.169]

При постановке экспериментов на обычных разрывных машинах образцы подвергаются растяжению с некоторой скоростью. Переменными являются три параметра: деформация, время и напряжение (Т = const), а результаты испытания фиксируются в виде кривой а =/(Е). Временной параметр при этом учитывается. Так поступают при испытаниях металлов и часто, к сожалению, полимеров. Чтобы не исключать временной фактор, статические испытания нужно проводить с различными скоростями деформирования в предельно широком диапазоне. Тогда фактор времени косвенно войдет в характеристику материала и кривые будут разными при различных скоростях деформирования. Для статических испытаний нужны машины с плавным изменением в широком диапазоне скоростей деформирования, с жесткими силоизмерителями, обладающими высокой собственной частотой колебаний. Последнее позволяет реализовать все скорости деформирования без ухудшения точности измерения. Кроме этого, машины должны во время испытаний поддерживать постоянными температуру и скорости деформирования. Требования к машинам для динамических и ударных испытаний резин, приборам твердости качественно отличны от требований к аналогичным машинам для металлов[2, С.43]

Результаты расчетов совпадают с экспериментальными данными во всем диапазоне скоростей сдвига, если в известное уравнение Бюхе и Хардинга ввести значение уки:[5, С.142]

Прочность ненаполненной резины из некристаллизующегося каучука СКС-30 во всем диапазоне скоростей растяжения возрастает (кривая 3, рис. 113). При больших скоростях ее прочность приближается к прочности наполненной резины из того же каучука. На кривой прочности резины из СКС-30, наполненной сажей (кривая 2, рис. 113), имеется максимум прочности, как у кристаллизующихся резин. Кроме того, при медленном растяжении прочность наполненной резины значительно выше, чем ненапол-[8, С.187]

Новый реологический прибор позволяет проводить детальное изучение реологических свойств в очень широком диапазоне скоростей деформации и напряжений сдвига, а также и установить количественные закономерности изменения упругих, деформационно-прочностных, вязкостных, эластических, релаксационных и тиксотропных свойств разнообразных полимерных, коллоидных и дисперсных систем, различающихся как по своей физико-химической природе, так и по консистенции — начиная от жидкообразных (структурированных и неструктурированных) систем и кончая твердообразными (пластично-твердыми) высококонцентрированными системами.[12, С.178]

Капиллярный реометр фирмы "Чеаст" (Италия) и капиллярный экструзионный реометр ACER-2000 (фирмы "Картер Баркер Энетрпрайзес", США) работают при высоком давлении (до 200 МПа) в широком диапазоне скоростей (от 0,05 до 750 мм/мин) и температур (от -20 до 450 С). В приборах предусмотрено устройство, позволяющее определять бесконтактным способом разбухание экструдата и температуру его поверхности.[6, С.451]

Динамические функции т]'(со) и G'(co) в области частот о> от 0,03 до 60 с"1 изучали при 190 °С с помощью реогониометра Вейссенберга с рабочим узлом типа конус — плоскость. Зависимость T](Y) в диапазоне скоростей сдвига у от 0,01 до 1 с"1 измеряли на этом же приборе, но при повышении скорости обра-[15, С.150]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Серков А.Т. Вискозные волокна, 1980, 295 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
10. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
11. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
12. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
13. Северс Э.Т. Реология полимеров, 1966, 199 с.
14. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
15. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
16. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
17. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
18. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
21. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
22. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
23. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.

На главную