На главную

Статья по теме: Полимеров находится

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Порог обнаружения полимеров зависит от природы образца и для большинства полимеров находится на уровне 1-3 %, что позволяет идентифицировать загрязняющие полимерные примеси и добавки. Так, примеси бутилкаучука в резинах на основе НК можно определить на уровне 1 %, а в резинах на основе каучуков других типов или комбинации каучуков - даже в меньших количествах (0,2-0,5 %). Присутствие бутилкаучука в резине устанавливают по пику изобутилена, появляющемуся на пирограмме в первые минуты от начала опыта, что позволяет чрезвычайно быстро получить информацию о наличии бутилкаучука в пробе.[4, С.74]

Логарифмическая приведенная вязкость полимеров находится в пределах 1 — 2,4 (0,5% -ный раствор в хлористом метилене).[3, С.256]

Полимерные волокна отличаются тем, что исходные полимеры в них находятся в ориентированном состоянии в результате сильной вытяжки. Большинство волокнообразующих полимеров находится в кристаллическом состоянии и характеризуется сильными межмолекулярными взаимодействиями. Температуры плавления этих полимеров 100—300° С. Природные и синтетические волокна являются основой для создания текстильных материалов и изделий.[1, С.11]

В пат. США 3544317 использовались малые различия в набухаемости экспонированных и неэкспонированных участков слоя полимера с карбоксильными группами для создания позитивной предварительно очувствленной печатной формы. Смесь диазосмолы типа А и сополимеров ненасыщенных карбоновых кислот (акриловой, метакриловой, акрилоилгидроксиакриловой, итаконовой и др.) с алкенами, карбоксилсодержащих конденсационных полимеров или карбоксиметилцеллюлозы (ММ полимеров находится в пределах от 10000 до 100 000) выбирается с учетом адгезии к подложке, вязкости, скорости проявления, требований к тиражеустойчивости печатной формы. Полимер должен растворяться в воде, однако его пригодность определяется отношением к смеси изопропилового спирта и воды (1:1): ои не должен растворяться в ней, а только слегка набухать, при этом слой полимера не должен разрушаться. Механизм образования позитивного изображения автору пат. США 3544317 ие ясен, однако ои предполагает, что высокомолекулярные части слоя при фотолизе разрушаются, идет трехмерное сшивание мелких фрагментов, которые имеют существенно меньшую адгезию к подложке, чем неэкспонированные.[5, С.121]

Некоторые свойства эпоксидных компаундов, которые можно 1азвать «структурно-нечувствительными»—плотность и диэлек-•рическая проницаемость, зависят главным образом от объем-юй доли наполнителя vz. Такие характеристики, как модуль шругости, занимают промежуточные положения. Структурно-[увствительные характеристики определяются не общей долей ^фектов и3, а их структурой. Например, если в компаунде >бразуется непрерывная сеть микротрещин, объем которых мо-кет быть небольшим (и3<0,01), как это наблюдается в на-юлненных эпоксидных компаундах при термостарении или при [еудачном режиме отверждения, то электрическая прочность :нижается в 10 раз, а газопроницаемость — на несколько по->ядков. В то же время содержание закрытых пор до и3 = = 0,10—0,15 сравнительно мало влияет на эти параметры, ютя заметно уменьшает длительную электрическую прочность. Следует иметь в виду, что электрическая прочность всех стекло-)бразных эпоксидных полимеров находится на одном уровне, и )азличие между компаундами по этому показателю появляется шенно из-за структурных дефектов. Широкое применение эпоксидных компаундов в значительной мере обусловлено именно юзможностью получать на их основе материалы с малым ко-шчеством макродефектов. Отклонения от технологического >ежима также проявляются в изменении макроструктуры, что i приводит к изменению характеристик компаунда.[6, С.165]

Прочность полимеров находится в тесной связи с их структурой и другими механическими свойствами. Поэтому изучение прочности вне учета особенностей строения и механических свойств полимеров не может быть плодотворным. Настоящая глава посвящается описанию механического разрушения полимеров.[7, С.56]

Хрупкое разрушение полимеров находится в прямой связи с наличием микродефектов и со степенью их опасности. Наличие микродефектов способствует концентрации больших напряжений в определенных точках. При наложении деформирующей нагрузки размеры дефектов в образце под действием теплового движения необратимо изменяются. Начинает расти большое число микротрещин. Этот процесс развивается с относительно малой скоростью, которая сильно зависит от температуры и макроскопического напряжения.[7, С.276]

Основная ошибка в определении U0 вызвана неточностью определения предэкспоненты А, которая для полимеров находится в интервале 10~п — 10~и с. Эта неопределенность приводит к ошибке в определении UQ, лежащей внутри интервала[10, С.109]

Была предпринята попытка количественно описать микрореологический механизм в тех случаях, когда один из полимеров находится в стеклообразном состоянии и реализация диффузионного механизма представляется маловероятной [389, с. 134]. Примером такой адгезии может служить адгезия пленки полиэтилена, наносимого из расплава, к целлофану. В этом случае формирование адгезионного шва вследствие диффузии концов макромолекул полимера в стеклообразный целлофан мало вероятно. Диффузионный механизм мало вероятен также при адгезии полимера, наносимого в виде расплава или раствора на силикатное стекло.[7, С.132]

Обзор термодинамических, механических и структурных исследований кристаллических полимеров ясно показывает, что теория кристаллического состояния полимеров находится в неудовлетворительном состоянии. Представления о кристаллическом состоянии, развитые для кристаллов низкомолекулярных тел и длительно применявшиеся при трактовке свойств кристаллических полимеров, оказались, как было выше показано, не применимыми к этому случаю. Представление о том, что аморфная фаза является определяющей механические свойства кристаллических полимеров, при более глубоком исследовании не подтвердилось и даже стал дискуссионным вопрос о том, является ли кристаллический полимер двухфазной системой или однофазной высоконеупорядоченной кристаллической системой.[13, С.86]

В. а. развивается в тем более широком диапазоне скоростей сдвига, чем шире молекулярно-массовоо распределение. Область В. а. расплавов большинства промышленных полимеров находится в интервале напряжений сдвига от ~103 н/м'1 (~104 дин/см") до ~105 н/м* (~10в дин/см*). При больших т развивается неустойчивое точение с изменением механизма деформирования полимеров. Для типичного расплава с вязкостью —105 н-сек/м* (—106 из) В. а. наблюдается в области скоростей сдвига >10~2 сек~1. Для практически монодисперсных полимеров переход от ньютоновского течения при низких скоростях сдвига к неустойчивому режиму течения происходит в очень узкой области[15, С.285]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
6. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
7. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
8. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
9. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
10. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
11. Виноградов Г.В. Реология полимеров, 1977, 440 с.
12. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
13. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
16. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную