На главную

Статья по теме: Изменением механизма

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

С увеличением времени воздействия напряжения ?Пр сначала резко падает, а затем остается приблизительно постоянной, что может быть объяснено изменением механизма пробоя при достаточно большом времени воздействия напряжения (возможен переход к тепловой фазе пробоя). Увеличение молекулярной массы полимера приводит к возрастанию его ?np (оно проявляется особенно четко для образцов, имеющих узкое распределение по длинам макромолекул). Это имеет место, например, для ПС, полученного путем дробного фракционирования предварительно деструктированных образцов (рис. 7.23).[1, С.208]

При температуре стеклования наблюдается излом зависимости Ъ.~$(Т). Ниже Т теплопроводность имеет небольшой положительный температурный коэффициент 0, а после Т — отрицательны!) (1>/(1Т 0. Это объясняют изменением механизма переноса тепла в аморфных полимерах в области температур выше Тс. Предполагают, что в пысокоэластнческом состоянии перенос энергии осуществляется не за счет распространения упругих во н (переброса фононов), а в результате передачи энергии путем внутри- и чежмолекулярного взаимодействия, т е. по механизму, характерному для жидкостей В этом случае теплопроводность[4, С.359]

Примером реакции, протекающей с «эффектом соседа», может служить гидролиз поли-тг-нитрофенилметакрилата, скорость которого в 104 раз больше скорости гидролиза низкомолекулярного n-нитрофенилового эфира изомасляной кислоты. Это обусловлено изменением механизма реакции: в полимере гидролиз эфирных групп протекает не под действием «внешних» ионов ОН~, а под влиянием соседних ионизированных карбоксильных групп:[2, С.52]

Испытания зависимости электрической прочности модельных вулканизатов от времени воздействия напряжения показали, что с увеличением времени воздействия напряжения электрическая прочность сначала резко падает, а затем остается примерно постоянной. Это объясняется, по-видимому, изменением механизма пробоя при достаточно большом времени воздействия напряжения. При этом возможен переход к тепловой форме пробоя.[9, С.256]

Согласно классификации, предложенной Н. А. Платэ с сотр. [4], можно выделить следующие основные отличия реакций полимеров от реакций их низкомолекулярных аналогов в связи со спецификой полимерного состояния вещества: 1) реакции, присущие только-полимерному состоянию вещества: распад макромолекул на более мелкие образования или до исходных молекул мономеров и меж-макромолекулярные реакции; 2) конфигурационные эффекты, связанные с изменением механизма или скорости химической реакции вследствие присутствия в макромолекулах звеньев иной пространственной конфигурации («эффект соседа»); 3) конформационные эффекты, связанные с изменением конформации макромолекулы в массе полимера или в растворе, после того как прошла химическая реакция; 4) концентрационные эффекты, влияющие на изменение скорости реакции вследствие изменения концентрации реагирующих групп около макромолекулы в растворе; 5) надмолекулярные эффекты, связанные с распадом или формированием новых надмолекулярных структур в массе или растворе полимера, способных изменить скорость реакции и структуру конечных продуктов.[3, С.220]

Как эффект концентрирования компонентов серной системы в составе ДАВ следует, очевидно, рассматривать результаты Банерджи и др. [84] по вулканизации натурального и бутадиен-стирольного каучуков комбинацией серной системы и ПДК. При добавлении к смеси каучука с ПДК серы, меркаптобензтиазола или их смеси в вулканизатах наблюдается уменьшение степени сшивания, несмотря на значительное присоединение серы к каучуку. Однако, если наряду с серой и меркапто-бензтиазолом вводятся ZnO и стеариновая кислота, то степень сшивания оказывается заметно большей, чем в перекисном вулканизате. Авторы считают, что эта метаморфоза связана с изменением механизма серной вулканизации с радикального на ионный. Однако ионный механизм серной вулканизации не доказан и в последнее время все больше подвергается критике [1, с. 227— 244; 70, с. 145]. В любом случае трудно себе представить отсутствие параллельной реакции по радикальному механизму, если действие обоих активаторов (перекись и стеарат цинка) направлено на один объект (элементарную серу).[10, С.241]

При введении цетилового спирта в качестве добавки к лаурил-сульфату натрия i[45, 46]i резко уменьшается скорость 'полимеризации и увеличивается размер частиц, что связывают с изменением механизма образования частиц.[11, С.92]

Из приведенных в табл. 4 результатов видно, что наблюдается очень сильное увеличение скорости кристаллизации (от 7 до 9 порядков величины) с увеличением степени вытягивания при постоянной температуре. Частично это может объясняться изменением механизма кристаллизации при деформации, однако в основном это объясняется значительным увеличением переохлаждения.[12, С.86]

В- а. развивается в тем более широком диапазоне скоростей сдвига, чем шире молекулярно-массовое распределение. Область В. а. расплавов большинства промышленных полимеров находится в интервале напряжений сдвига от ~Ю3 н/м2 (~104 дин/см2) до —105 н/м2 (~106 дин/см2). При больших т развивается неустойчивое течение с изменением механизма Деформирования полимеров. Для типичного расплава с вязкостью — 10s н-сек/м3 (~106 пз) В. а. наблюдается в области скоростей сдвига >10~2 сек-1. Для практически монодисперсных полимеров переход от ньютоновского течения при низких скоростях сдвига к неустойчивому режиму течения происходит в очень узкой области[15, С.282]

В. а. развивается в тем более широком диапазоне скоростей сдвига, чем шире молекулярно-массовоо распределение. Область В. а. расплавов большинства промышленных полимеров находится в интервале напряжений сдвига от ~103 н/м'1 (~104 дин/см") до ~105 н/м* (~10в дин/см*). При больших т развивается неустойчивое точение с изменением механизма деформирования полимеров. Для типичного расплава с вязкостью —105 н-сек/м* (—106 из) В. а. наблюдается в области скоростей сдвига >10~2 сек~1. Для практически монодисперсных полимеров переход от ньютоновского течения при низких скоростях сдвига к неустойчивому режиму течения происходит в очень узкой области[14, С.285]

Для ионной Р. п. характерно возрастание скорости процесса и мол. массы образующихся полимеров при понижении темп-ры [кажущаяся энергия активации от —4,2 до —12,6 кдж/молъ (от —1 до —3 ккем/моль)]. Поэтому с уменьшением темп-ры (в интервале от 25 до —130°С) скорость Р. п. стирола в хлорированных углеводородах, а также акрилонитрила в триэтиламине и диметилформамиде проходит через минимум, что обусловлено изменением механизма от радикального к ионному. Скорость ионной полимеризации в р-ре пропорциональна интенсивности излучения в первой степени, а мол. масса полимеров не зависит от этого параметра, что указывает на мономолекулярный обрыв растущих цепей. Реакция ингибируется бензохиноном и кислородом (но не дифенилпикрилгидразилом). Составы сополимеров отвечают составам, найденным при каталитич. ионной полимеризации. Определяющую роль в развитии ионной Р. п. в р-ре при низких температурах, как и при каталитич. полимеризации, играет явление сольватации.[16, С.126]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
6. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
7. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
8. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
11. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
12. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
17. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную