На главную

Статья по теме: Инициировать полимеризацию

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При окислительно-восстановительных реакциях в системе возникают свободные радикалы, которые могут инициировать полимеризацию. Чаще всего в качестве окислительных агентов используют органические или неорганические перекисные соединения, а в качестве восстановительных агентов ионы металлов, находящихся в низшем валентном состоянии, либо неметаллические, легко окисляемые соединения (например, некоторые серосодержащие соединения). Можно использовать также системы из трех компонентов, а именно: перекисного соединения, иона металла (например, Fe2+) и другого восстановителя типа кислого сульфита. В последнем случае ионы трехвалентного железа, получаемые в результате окислительно-восстановительной реакции между Fe2+ и перекисным соединением, вновь восстанавливаются кислым сульфитом до Fe2+, поэтому для реакции достаточно очень малого количества ионов Fe в системе.[5, С.133]

Любой из этих радикалов может инициировать полимеризацию ненасыщенных мономеров с образованием полимеров, содержащих карбоксильные группы.[1, С.424]

Перекисные соединения, способные инициировать полимеризацию ВА при низких температурах, возникают также при окислении кислородом или перекисями диэтилкадмия, триэтилалюминия и других металлорганических соединений.[7, С.9]

Многие металлоорганические соединения способны инициировать полимеризацию ненасыщенных соединений. Из них особое значение имеют металлоорганические соединения щелочных металлов, цинкорганические и кадмийорганические соединения (например, диэтилцинк, диизобутилцинк) и магнийорганические соединения. Полимеризацию под действием металлоорганических соединений обычно проводят в растворах. Наиболее распространенными растворителями являются алифатические и ароматические углеводороды (гексан, гептан, декалин, бензол, толуол).[5, С.148]

Ингибиторы — это вещества, которые обрывают растущие цепи полимера, превращаясь при этом в соединения, не способные инициировать полимеризацию. В качестве ингибиторов обычно используют вещества, передача цепи на которые приводит к образованию неактивных (стабильных) радикалов. На практике для ингибирования радикальной полимеризации часто применяют гидрохинон, бензохинон, ароматические амины, нитробензол.[6, С.46]

Ббльшая часть неионизированного хлорида алюминия присоединяется к изобутилену с образованием устойчивого комплекса, не способного инициировать полимеризацию. Вследствие этого степень активности каталитической системы, рассчитанной как отношение количества образовавшегося полимера (в г) к общему числу молей хлорида алюминия, является весьма низкой.[1, С.330]

Необходимо отметить, что окислительно-восстановительные системы в отличие от перекисных инициаторов или азосоединений не всегда способны инициировать полимеризацию ненасыщенных мономеров. Поэтому при исследовании полимеризации новых соединений целесообразно всегда начинать с полимеризации, инициированной не окислительно-восстановительной системой, а, например, перекисью бензоила (см. раздел 3.1.1).[5, С.134]

Если нагревание, облучение или механическую обработку полимера (А)„ производить в присутствии мономера В, то образующиеся макрорадикалы будут инициировать полимеризацию мономера В и получатся блок-сополимеры. Поскольку макрорадикал может содержать неспаренный электрон не только на конце, но и в середине цепи,[4, С.202]

Блоксополимеры получают разными методами. Во-первых, при анионной полимеризации одного мономера возникающие «живые» цепи, т. е. макрорадикалы, могут инициировать полимеризацию другого мономера:[6, С.55]

Этилен содержит примеси, которые по их влиянию на процесс полимеризации можно разделить на активные и инертные. Активные примеси могут приводить к сшивке макромолекул полиэтилена (ацетилен), сополимеризоваться с этиленом (пропилен), инициировать полимеризацию (кислород) и обрывать растущую цепь полиэтилена (водород, сероводород). Инертные примеси (пропан и др.) лишь разбавляют этилен. Рециркулирующий (возвратный) этилен может содержать также эфиры и альдегиды, которые, окисляясь, могут вестичсебя как активные примеси. Практически для получения полиэтилена высокого давления с инициатором кислородом применяют этилен с чистотой не менее 99,9% (об.).[6, С.74]

Привитые сополимеры можно получать также на основе полимерных сбединений, содержащих пероксидные и гидропероксид-ные группы (макромолекулярные инициаторы пероксидного типа). Эти соединения в определенных условиях распадаются с образованием свободных радикалов, способных инициировать полимеризацию мономеров, находящихся в реакционной системе. Введение в макромолекулы перекисных и гидроперекисных групп осуществляется путем окисления полимеров (кислородом или озоном) либо путем облучения исходных полимеров ионизирующими излучениями на воздухе. В общем виде реакция протекает по схеме[3, С.64]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
6. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
7. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
8. Пашин Ю.А. Фторопласты, 1978, 233 с.
9. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
10. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
11. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
12. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
13. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
14. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
15. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
16. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
17. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
18. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
21. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
22. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
23. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
24. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
25. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
26. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
27. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную