На главную

Статья по теме: Конформацию макромолекулы

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На конформацию макромолекулы и морфологию надмолекулярной организации (НМО) ПВДФ может влиять способ полимеризации ВДФ [156]. При полимеризации в полярной среде, например воде, образуется напряженная зигзаг-конформация (р-форма), в слабополярной — менее напряженная, свернутая в спираль, конформация (а-форма). В процессе полимеризации в слабополярной среде наряду с образованием а-формы возможно возникновение и р-формы кристаллитов; последние увеличивают дефектность кристаллической решетки. Поэтому а-форма кристаллитов, образующихся при полимеризации, всегда низкоупорядоченна (ан-форма). Высокоупорядоченная ав-форма получается при кристаллизации полимера из расплава или из слабополярных растворителей [156]. Морфология НМО тонких пленок ПВДФ также зависит от способа синтеза полимера и его молекулярной массы. Сферолитную структуру имеют пленки образцов полимера, полученных радиационным и химическим инициированием с молекулярной массой Mw < 105. При Mw > Ю6 морфология НМО отличается от сферолитов, что связано с образованием сшивок в процессе радиационной полимеризации ВДФ [157].[7, С.83]

Рассмотрим еще одну конформацию макромолекулы — складчатую. Ее можно представить как вытянутую цепь с изломами. По сравнению с вытянутой конформацией она несколько проигрывает в конформационной энергии, но зато может «обеспечить» взаимодействие между вытянутыми участками без помощи других макромолекул. Такая конформация реализуется в кристаллическом состоянии (кристаллы со сложенными цепями, см. гл. III) и в р-структурах полипептидов и белков.[5, С.21]

Таким образом, конформация макромолекулы представляет собой сумму низших конформацнонных уровне!"). Например, конформацию макромолекулы полипропилена можно .характеризовать следующим образом: конформация звена — транс и гош; ближний конформационный порядок т—громе и гош\ дальний —[4, С.43]

Задание. Определить фазовое состояние изотропного и ориен< тированного образца полиизопрена, объяснить наблюдаемую картину; определить конформацию макромолекулы полиизопрена.[2, С.193]

Зная период идентичности и др. параметры элементарной ячейки, а также элементы симметрии, уже на первом этапе исследования структуры во многих случаях удается определить конформацию макромолекулы или же указать несколько наиболее вероятных конформации и размещение макромолекул в элементарной ячейке. При расшифровке структуры следует также иметь в виду, что во всех известных случаях оси макромолекул в кристаллитах располагаются параллельно[11, С.168]

Натта и Коррадини 17М сделано теоретическое обобщение работ итальянской школы в области стереорегулярных кристаллических полимеров. Вскрыты закономерности, позволяющие предвидеть конформацию макромолекулы в растворе и в кристаллическом состоянии, а также вид упаковки макромолекул в кристаллической решетке. Исследования макромолекулярной структуры позволяют решать вопросы, касающиеся химической и пространственной изомерии, а в некоторых случаях предсказывать новые типы макромолекул [с заранее заданными свойствами. Обсуждаются ограничения, накладываемые типом сге-реорегулярности на конформацию цепей в кристаллическом состоянии. Рассмотрены важнейшие типы структур, которые могут присутствовать в кристаллах, и соотношения между кристалличностью и кристаллической структурой, с одной стороны, и физическими свойствами — с другой.[12, С.266]

Наблюдаемые размеры макромолекул во всех случаях больше вычисленных в предположении свободного вращения. Это несомненно отражает сильнейшее влияние заторможенности внутреннего вращения на конформацию макромолекулы. Самые большие различия наблюдаются для производных целлюлозы. Однако изменение размеров молекул этих полимеров с повышением температуры указывает на увеличение свободы вращения. Размеры молекул полистирола и полиакрилонитрила относительно высоки и несомненно обусловлены влиянием боковых заместителей. Для натурального каучука, полиизобутилена, по* лидиметилсилоксана и полиэтилена рассматриваемое отношение (табл. 1) оказывается ниже среднего значения. Ограниченные данные, имеющиеся для белков и полипептидов в неупорядочен^ ном состоянии, также не выявляют каких-либо необычных кон-формационных характеристик. Эти макромолекулы обладают размерами, сравнимыми с наблюдаемыми для более простых цепных молекул.[9, С.19]

Полипептидные цепи способны образовывать а-спиральную конформацию (рис. 6.10). Такая конформация характеризуется максимальным насыщением водородных связей вдоль оси спирали. Боковые заместители аминокислотных звеньев направлены наружу и находятся вне спирали. Дополнительным фактором, фиксирующим а-спиральную конформацию макромолекулы белка, является образование внутрицепных дисульфидных (цистиновьгх), сложноэфирных и солевых связей. Возникновение двойных и тройных спиралей обусловлено интенсивными межмолекулярными взаимодействиями между ними. Такие спиральные одно- и многоцепочечные макромолекулы являются примером стержнеобразных жестких цепей, характеризующихся /Ф < 0,63.[1, С.344]

Для более уверенного отнесения полимера к жесткоцепным или гибкоцепным следует принимать во внимание не только абсолютное значение персистентной длины, но и другие факторы. Примером полимера, который по значению персистентной длины может быть отнесен к гибкоцепным, но проявляет благодаря массивности элементарного звена и сильным межмолекулярным взаимодействиям свойства жесткоцепного, является полиимид. ПМ *. В растворе конформацию макромолекулы жесткоцепного полимера с контурной длиной, в несколько раз меньше персистентной длины, можно считать вытянутой.[5, С.21]

Характерной особенностью биологически активных белков является л^гУпгтьг с. которой они изменяются под влиянием тепла, ферментов, кислот и различных органических соединений. .При этом происходит денатурация белка [102] с полной утратой его, биологической активности. Денатурация, которая, как правило, является необратимым процессом, представляет собой скорее фи^ зическую или внутримолекулярную перегруппировку, чем химическое изменение структуры нативного белка; она меняет специфическую пространственную конформацию макромолекулы,/ но не сопровЪждается гидролизом ковалентных связей. В живых организмах эта конформация возникает в результате взаимодействия боковых ответвлений полипептидных цепей, являясь термодинамически неравновесной; во время денатурации белок переходит в равновесную денатурированную форму. При достаточно сильном воздействии ферментов, тепла и различных химических агентов могут все же произойти более глубокие изменения вплоть до расщепления макромолекулы на отдельные аминокислоты вследствие гидролиза по пептидным связям.[8, С.331]

Исходя из размеров элементарной ячейки и числа звеньев макромолекулы, приходящихся на одну ячейку, находят плотность кристаллитов. Экспериментально определенная плотность полимера всегда меньше плотности кристаллитов, поскольку в образце имеются менее упорядоченные, аморфные участки, обладающие меньшей плотностью, а также поры и др. неоднородности. Напр., максимальная плотность кристаллитов ио-лиэтилентерефталата 1,455 г/еж3, плотность аморфных участков — 1,34 г/см3, а плотность образцов этого полимера находится обычно в пределах от 1,36 до 1,41 г/см3. Зная период идентичности и др. параметры элементарной ячейки, а также элементы симметрии, уже на первом этапе исследования структуры во многих случаях удается определить конформацию макромолекулы или же указать несколько наиболее вероятных конформации и размещение макромолекул в элементарной ячейке. При расшифровке структуры следует также иметь в виду, что во всех известных случаях оси макромолекул в кристаллитах располагаются параллельно[10, С.168]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Бартенев Г.М. Физика полимеров, 1990, 433 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Пашин Ю.А. Фторопласты, 1978, 233 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
10. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
11. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
12. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную