На главную

Статья по теме: Особенности поведения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Учитывая особенности поведения разбавленных растворов полимеров и связанные с этим отклонения от закономерностей для идеальных растворов, при вычислениях обычно пользуются уравнением Оствальда, удовлетворительно отражающим зависимость[2, С.79]

Выделение всех операций, связанных с перемещением сыпучих твердых материалов, в отдельную элементарную стадию оказывается вполне оправдано, если принять во внимание специфические особенности поведения сыпучих систем, образованных твердыми частицами полимера. Для грамотного проектирования заводов по переработке полимеров и конструирования перерабатывающего оборудования необходимо хорошо разбираться в вопросах, связанных с процессами[3, С.32]

Кинетические закономерности коагуляции латексов бутил-акрилатных каучуков те же, что и для латексов бутадиен-нит-рильных каучуков, стабилизованных алкилсульфонатом натрия. Так, для латексов, полученных в присутствии 2,5 ч. (масс.) алкил-сульфоната натрия, расход хлорида натрия на коагуляцию составляет около 4,5 т на 1 т полимера, температура процесса 65—70°С, время коагуляции примерно 20 с. Такой прием коагуляции указанных латексов не является технологически удобным. Поэтому были разработаны условия выделения бутилакрилатного каучука с применением солей алюминия, учитывая особенности поведения этих солей в растворе [13, 14]. Коагулирующая способность ионов алюминия примерно в 2000 раз выше, чем ионов натрия. Даже при 25—30 °С коагуляция проходит мгновенно, примерно за 1 с. Скорость коагуляции, способность к удалению коагу-дашта из каучука (а равно :: спойстса зулканизатов) определяются состоянием иона алюминия в растворе.[1, С.391]

При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения ДЯ в большинстве случаев мала; в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера и растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров.[1, С.33]

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях[4, С.3]

Классификация физических состояний ф Особенности поведения полимеров в разных физических состояниях[4, С.31]

Данная теория, однако, не могла объяснить некоторые особенности поведения целлюлозы, например, обязательную стадию набухания перед растворением. Было непонятно, почему вообще возможно набухание, то есть какими силами удерживаются мицеллы при проникновении растворителя в целлюлозное волокно и почему оно не распадается сразу на отдельные мицеллы. Определенная на основании результатов рентгенографических измерений длина мицелл составляла примерно 50...60 нм, что соответствовало степени полимеризации молекул всего лишь около 100. Однако работы Штаудингера по вязкости растворов целлюлозы вскоре показали, что целлюлоза представляет собой типичный полимер и ее СП в действительности намного выше. Первоначальная мицеллярная теория подвергалась критике, и понятие мицеллы в результате работ отечественных исследователей (Роговин, Н. Никитин, Шарков и др.) и зарубежных (Фрей-Висслинг, Ренби, Престон и др.) было пересмотрено. Марк и Мейер изменили свои взгляды на кристаллическую структуру целлюлозы, а результаты рентгенографических измерений получили иную трактовку. Была предложена новая мицеллярная теория строения целлюлозы - теория аморфно-кристаллического строения.[10, С.236]

Таким образом, для правильного выбора условий переработки и эксплуатации полимерных материалов необходимо знать особенности поведения полимеров в кристаллическом, стеклообразном и вы-сокоэластическом состояниях и закономерности их переходов из °ДНого физического состояния в другое.[6, С.151]

Особенности поведения органических[6, С.303]

Особенности поведения полимерных материалов при циклических напряжениях определяются прежде всего их релаксационными особенностями. Циклические напряжения сопровождаются увеличением температуры образца. Причиной саморазогрева является внутреннее трение, приводящее к отставанию деформации от приложенного напряжения и в свою очередь зависящее от физико-химических свойств полимера (молекулярная и надмолекулярная организации, межмолекулярное взаимодействие, сегментальная подвижность, наличие свободного кинетического объема).[13, С.100]

Особенности поведения ориентированных образцов ИПП под нагрузкой в интервале от —30 до 50 °С и ПКА в условиях циклического нагружения рассмотрены в работах [139, 140], а поведение отожженных ориентированных образцов ПЭ — в работе [141]. Непосредственно установлено, что кинетическая гибкость полимерных цепей может изменяться не только в зависимости от температуры, но и в силу как бы механического стеклования аморфных областей полимера. Анализ этих данных показал, что торможение сегментального движения в напряженном состоянии следует объяснять уменьшением числа возможных конформаций цепей при растяжении, а не увеличением стерических межмолекулярных препятствий движению [142, 143]. Торможение молекулярного движения означает, что под нагрузкой полимер теряет эластические свойства — в момент разрыва материал ближе к твердому телу, чем в исходном состоянии. Таким образом, как ИК-спектроскопические, так и ЯМР-данные свидетельствуют о гош-гранс-переходах, возникающих при упругом растяжении ориентированных аморфно-кристаллических полимеров.[23, С.145]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
8. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
9. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
10. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
11. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
12. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
13. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
14. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
15. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
16. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
17. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
18. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
19. Виноградов Г.В. Реология полимеров, 1977, 440 с.
20. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
21. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
22. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
23. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
24. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
25. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
26. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
27. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
28. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
29. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную