На главную

Статья по теме: Полимеризации Необходимо

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для проведения привитой полимеризации необходимо знать количество перекисей, которое накапливается при окислении полипропилена, т. е. условия динамического равновесия возникновения и разложения перекисей. Зависимость накопления перекисей от времени окисления атактического полипропилена воздухом [57] при 90—120° С показана на рис. 6.2. На поздних стадиях процесса окисления скорость образования перекисей постепенно снижается, и кривые проходят через максимум. В области за максимумом скорость разложения перекисей выше скорости их образования. Энергия активации образования перекисей, судя по значениям скорости пероксидации, равна 24,5 ккал/моль, а энергия активации разложения перекисей, по данным их разложения во времени (рис. 6.3), 27 ккал/моль [57, 57а]. Деструкция атактического[5, С.131]

При проведении эмульсионной и микросуспензионной полимеризации необходимо знать верхней предел интенсивности перемешивания е, начиная с которого наступает коагуляция частиц и образуется значительное количество корок. Нижний предел определяется из условия обеспечения равномерного распределения дисперсных частиц по объему аппарата. Павлушенко и Янишевский установили [103], что равномерность распределения фаз в аппарате с мешалкой для конкретной системы жидкость - жидкость и конкретного аппарата зависит от частоты вращения мешалки. Авторы ввели (как и для перемешивания суспензии) понятие минимальной частоты вращения мешалки nmjn, при которой достигается практически равномерное распределение фаз, и получили для аппаратов без отражательных перегородок следующее[9, С.69]

Качество получаемого каучука определяется в основном стадией полимеризации. В процессе полимеризации необходимо обеспечить постоянство молекулярной массы и высокую бифункцио-нальность полимера. Первый показатель будет зависеть от постоянства отношения концентраций мономера и инициатора М/д//-Поскольку во время процесса полимеризации концентрации мономера и инициатора изменяются с разными скоростями, это отношение будет меняться в течение полимеризации, так как в большинстве случаев инициатор расходуется быстрее, чем мономер. Чем больше инициатора введено в начале процесса, тем меньше сократится значение М/У/, при некоторой заданной конверсии мономера, и тем медленнее будет возрастать молекулярная масса полимера в течение процесса. С другой стороны, при малой[1, С.420]

Эффективность окислительно-восстановительных систем зависит от ряда факторов, поэтому для создания оптимальных условий проведения полимеризации необходимо тщательно сбалансировать окислительно-восстановительные компоненты. Так, наиболее благоприятные условия не всегда достигаются при эквимольном соотношении компонентов инициирующей системы. Обычно справедливо правило, что при постоянном отношении окислителя и восстановителя скорость полимеризации возрастает с увеличением концентрации инициатора, а степень полимеризации образующегося полимера при этом уменьшается (см. опыт 3-19).[8, С.134]

Полимеризация. Товарные латексы обычно стремятся получить с высокой концентрацией полимера. Это обусловлено как экономическими соображениями, так и качеством получаемых на основе латексов изделий. Обычно продукты эмульсионной низкотемпературной полимеризации после отгонки незаполимеризовавшихся мономеров содержат менее 30% сухих веществ. Средний размер частиц в них составляет 50—150 нм. При концентрировании таких латексов вязкость системы резко возрастает, и при содержании сухих веществ около 50% латекс становится непригодным для переработки. Для получения текучих латексов с высокой концентрацией в процессе полимеризации -необходимо обеспечить образование крупных частиц. Этого можно достигнуть уменьшением концентрации эмульгатора {40], но заметное увеличение размеров частиц (рис. 2) обеспечивается лишь при очень низких концентрациях эмульгатора и соответственно резко пониженной скорости полимеризации (рис. 3) [40]. Для обеспечения стабильности такой системы в промышленности эмульгатор добавляют в процессе полимеризации (например, таким образом получаются латексы низкотемпературной полимеризации типа 2100 или 2105). При этом для достижения конверсии 60% требуется почти 60ч. В общем получать латексы с большим размером частиц и широким их распределением по величине непосредственно в процессе полимеризации считается непрактичным, хотя имеются сообщения о получении[1, С.590]

Аналогичный процесс наблюдается при длительном термическом воздействии на синтетические каучуки. Во время такой вторичной термической полимеризации необходимо предотвращать возможность окислительной деструкции макромолекул, что достигается нагреванием полимера без доступа воздуха или ».«• атмосфере азота.[2, С.238]

При выборе условий перемешивания наряду с требованием равномерного распределения реагентов в объеме аппарата и обеспечения отвода тепла реакции полимеризации необходимо обеспечить агрега-тивную устойчивость дисперсных частиц с целью получения минимального количества корок и коагулюма. Движение частиц размером 0,02- 2 мкм в потоке жидкости в отличие от движения частиц суспензионного ПВХ характеризуется коэффициентами как турбулентной, так и броуновской диффузии. Турбулентная диффузия для частиц диаметром d, намного меньшим внутреннего масштаба турбулентности, преобладает над броуновской при условии [78][9, С.59]

Как правило, отмеренные количества компонентов катализатора (четырехх лор истый титан и тетрадециллитиналюминий) смешивают в инертном растворителе, обычно цнклогексаие. При смешении компонентов и в ходе полимеризации необходимо энергичное перемешивание. Основной трудностью в процессе полимеризации является предотвращение доступа кислорода на всех стадиях полимеризации и приготовления катализатора. Вода и другие электрофильные агенты также должны быть исключены, поскольку они дезактивируют катализатор.[4, С.249]

Как видно из рис. 1.2, регулирование кинетических закономерностей реакции радикальной полимеризации можно осуществлять в основном двумя путями. Во-первых, изменять время до начала полимеризации, т. е. величину индукционного периода, длительность которого измеряется длиной участка ингибирования по оси абсцисс. Поскольку для начала процесса полимеризации необходимо создать некоторую критическую концентрацию свободных радикалов инициатора (на участке ингибирования, т. е. в индукционном периоде, она ниже) можно вводить вещества, реагирующие с начальными радикалами и приводящие к их гибели, и таким образом увеличивать длину индукционного периода. Это часто необходимо делать в технологии производства полимеров для предотвращения преждевременной полимеризации в неконтролируемых условиях.[3, С.28]

Применительно к каучукам, получаемым методом эмульсионной полимеризации, необходимо измерение вязкости по Муни как конечного продукта (товарного. каучука), так и полимера латекса, что привело к разработке экспресс-методов определения этого показателя [14]. Существует два вида экспресс-методов: косвенные, помогающие найти достаточно точную и воспроизводимую корреляционную зависимость между какой-либо быстро определяемой характеристикой полимера и вязкостью по Муни; и прямые. Из косвенных наибольший интерес представляют методы, исключающие стадии выделения и сушки полимера [15, 16]. В них совмещены процессы коагуляции латекса и растворения полимера; вязкость рассчитывается по значениям удельной вязкости раствора полимера по корреляционным зависимостям. К недостаткам косвенных методов относится нарушение корреляции из-за влияния различных факторов, не учитываемых уравнением, например влияния полидисперсности полимера на вязкость по Муни [17, 18, 19], остатков эмульгатора на удельную вязкость растворов [15]. Поэтому воспроизводимость этого метода на практике часто приводит к большим погрешностям; преимущество прямых методов -большая надежность получаемых результатов, так как измеряется непосредственно нужный показатель.[6, С.442]

Перед проведением полимеризации необходимо удалить ингибитор.[11, С.111]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
8. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
9. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
10. Пашин Ю.А. Фторопласты, 1978, 233 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
15. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
16. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
17. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
18. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
21. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
22. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
23. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
24. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
25. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
26. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
27. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
28. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную