Исследование процессов разрушения наполненных резин методом электронной микроскопии показывает [270], что разрыв происходит по извилистой линии от одной поверхности раздела каучук — наполнитель к другой. Поверхности частиц наполнителя или непосредственно примыкающие к ним области могут являться слабыми местами, по которым происходит разрушение. Многочисленные внутренние дефекты, характерные для структуры вулканизатов, вызывают повышенное рассеяние энергии вследствие увеличения объема резины, который необходимо подвергнуть сильному растяжению в процессе разрыва. Объем вовлеченной в процесс деформирования резины и величина рассеиваемой энергии деформации зависят от степени адгезии каучука к наполнителю. Таким образом, появление дефектов (гетерогенности) может не только ослаблять прочность адгезионного соединения, но и быть причиной упрочнения материала.[8, С.267]
Механизм разрушения, относящийся к группе атермических процессов разрушения, у которых роль теплового движения атомов исключается, реализуется при температурах, близких к О К, или при больших скоростях нагружения (близких к звуковым). В стеклообразном состоянии (ниже температуры стеклования Тс) или в кристаллическом состоянии (ниже температуры плавления Гпл) на-[3, С.289]
Кроме подхода с точки зрения механики процесса разрушения (механического) существуют два физических подхода к теории прочности: термодинамический и кинетический. Последние позволяют понять природу процессов разрушения полимеров и объяснить их механизмы, учитывая законы термодинамики и структуру материала.[3, С.287]
Деформационные свойства, в том числе механические потери, являются проявлением релаксационных свойств полимеров. Влияние механических потерь на процесс разрушения поставило более широкую проблему о взаимосвязи релаксационных свойств (деформационных) и процессов разрушения в полимерах. Эта важная проблема находится в стадии развития как в теоретическом [10; 11.20], так и в экспериментальном плане [11.21; 11.22]. Так, замечено, что прочность испытывает на температурной зависимости скачкообразные изменения при температурах у- и (3-релаксационных переходов, когда изменяется молекулярная подвижность в цепях полимера. В стеклообразном состоянии существует ряд характерных температур (релаксационных переходов), в которых долговечность претерпевает изменение. Для исследования природы деформации и разрушения полимера в стеклообразном состоянии изучались ползучесть, долговечность, разрывное напряжение и ширина линии ЯМР в широком температурном интервале. Установлены следующие принципиальные положения.[3, С.317]
Релаксационные процессы в полимерах определяют их вязко-упругие свойства и влияют на прочностные свойства этих материалов. Влияние релаксационных процессов на разрушение полимеров в высокоэластическом состоянии более существенно, чем в твердом [63]. В связи с этим понять природу процессов разрушения эластомеров и физический смысл наблюдаемых закономерностей можно на пути выяснения прежде всего фундаментального вопроса о взаимосвязи релаксационных процессов с процессом разрушения. Решение этого вопроса было осуществлено в работах [12.17; 12.19], где проведены широкие исследования температурной зависимости комплекса характеристик: релаксации напряжения, вязкости, процессов разрушения (долговечности и разрывного напряжения). Для исследований были выбраны несшитые и сшитые неполярные эластомеры: бутадиен-стирольный СКС-30 (Тс = —58° С) и бутадиен-метилстирольный СК.МС-10 (Тй=—72°С), а также полярные бутадиен-нитрильные эластомеры. Условия опытов охватывали широкий диапазон напряжений и деформаций растяжения и сдвига (несколько порядков величины). Исследования физических свойств проводились для каждого эластомера на образцах, полученных при одних и тех же технических режимах приготовления образцов (переработка и вулканизация).[3, С.341]
Исследовались несшитые и сшитые бутадиен-нитрильные каучу-ки с различным содержанием нитрильных CN-групп в цепях (18, 26 и 40%). Характеристики процессов разрушения сопоставлены с релаксационными данными (спектры времен релаксации, спектры внутреннего трения и вязкость).[3, С.348]
В настоящее время можно сформулировать следующие основные положения с учетом последних данных в этой области. Спад напряжения в деформированных резинах при высоких температурах является результатом процессов разрушения и перестройки пространственной сетки полимера, протекающих с разрушением химических связей и их последующим возникновением в новых местах. Непосредственным доказательством такой перестройки является необратимое течение пространственно-структурированных полимеров с увеличением доли остаточной деформации. В некоторой степени это доказывают и большие значения энергии активации процесса химической релаксации. Так. по данным Тобольского38, энергия активации этого процесса равна 30±2 ккал/моль для вулканизованных серой резин из натурального, бутадиен-стирольного, полихлоропренового и бутилкаучу-ка. В недавно проведенной работе46 показано, что после предварительной выдержки в атмосфере азота при высокой температуре девяти различных вулканизованных серой резин из НК последующая химическая релаксация в присутствии кислорода протекала с энергией активации 29 ккал/моль. Аналогичные данные получены также Берри и Ватсоном47. Энергия активации химической[6, С.251]
Кроме деформационных свойств полимеров важными для технологии их получения и эксплуатации являются прочностные свойства. Кинетика процесса разрушения сшитых и несшитых эластомеров, а также процессы их Х-релаксации характеризуются одной и той же энергией активации. Это свидетельствует о том, что в эластомерах кинетику процессов разрушения определяют межмолекулярные, а не химические связи.[3, С.144]
В различных физических и структурных состояниях процессы разрушения полимеров характеризуются различными особенностями, причем по мере перехода от низкотемпературных областей к высокотемпературным роль молекулярной подвижности и теплового движения в процессах разрушения приобретает все большее значение. В табл. 11.2 приведена классификация различных процессов разрушения на примере главным образом некристаллических полимеров. Некоторые черты этих механизмов наблюда-[3, С.287]
В первой части данного раздела были рассмотрены частично кристаллические полимеры (ПЭВП, ПП, ПА). Не меньшее внимание в литературе уделяется морфологии поверхности разрушениястеклообразных полимеров. Во многих исследованиях трещин серебра для объяснения их роста и разрушения материала [76—177] используется фрактография. Фрактографиче-ские исследования процессов разрушения ПС описаны в работах [106, 115, 132, 150, 155, 169, 191, 194, 199], ПММА —в работах [61, 66, 197, 200], ПВХ —в работах [198, 208] и ПК —в работе [196].[1, С.397]
В данной главе приведен обзор общих представлений различных теорий разрушения, не имеющих явной связи с характерными свойствами молекулярных цепей, их конфигурационной и надмолекулярной организацией, тепловой и механической перестройкой. Это относится к классическим критериям ослабления материала и общим механическим моделям сплошных сред. Теории кинетических процессов разрушения учитывают вязкоупругое поведениеполимерного материала, но вывод критериев разрушения не связан с подробным морфологическим анализом. Эти основополагающие теории тем не менее неоценимы для объяснения статистических неморфологических сторон процесса разрушения или его характеристики с точки зрения механики сплошных сред.[1, С.59]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.