На главную

Статья по теме: Протекает деструкция

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Ряд авторов2!27 считает, что по закону случая протекает деструкция только линейных полимеров и чем больше .степень разветвления (при условии, что таковая цепь содержит более одного атома углерода), тем больше скорость деструкции и тем больше она отклоняется от теории деградации по закону случая. По мнению авторов, разветвленность полимера увеличивает внутримолекулярную передачу водорода в процессе деструкции за счет межмолекулярной.[11, С.280]

В табл. 11.32 для полимеров различного химического строения даны значения температур, при которых начинается и протекает деструкция, и энергии активации этих процессов (или температурные коэффициенты скорости деструкции, которые являются показателем ускорения процессов деструкции при повышении температуры).[10, С.299]

На протекание механодеструкцни большое влияние оказывает среда, в которой происходит процесс. Особенно интенсивно протекает деструкция в среде кислорода из-за образования пероксидных радикалов, которые принимают участие в дальнейших реакциях окисления. На рис 3.12 показано изменение пластичности при пластикации натурального каучука в различных средах. Наименьшая деструкция наблюдается в среде азота. Характер среды предопределяет и температурную зависимость механодеструкции. В среде инертного газа пластичность незначительно и монотонно убывает до ПО—-130 °С (т е. до температурной области вязкого течения). В среде же, содержащей кислород, деструкция подчиняется закономерностям процесса термоокисления, для которого характерен положительный температурный коэффициент. В результате наложения двух процессов (механодеструкции и термоокисления) температурная зависимость изменения свойств в результате деструкции списывается кривой с минимумом в области температур, близ-лчх к температуре вязкого течения.[6, С.222]

Механизм термической деструкции ФС основательно изучен [4, 5]. Установлено, что независимо от того, в окислительной или инертной атмосфере протекает деструкция, процесс всегда имеет термоокислительный характер из-за высокого содержания в ФС кислорода. Ниже излагается предложенный Конли [4] механизм этого процесса.[4, С.102]

Предельные углеводороды [1]. Высокомолекулярныеуглеводороды так же как и низкомолекулярные парафины, химически инертны. Они вступают в химические реакции лишь при повышенной температуре, при которой обычно протекает деструкция полимера. Например, полиэтилен, как и низкомолекулярные парафины, хлорируется при высокой температуре, но при этом наряду с хлорированием происходит его пиролиз.[3, С.225]

Если при химических реакциях полимеров не происходит изменения длины макромолекулы, а образуются только новые функциональные группы на той же макромолекуле, то такие превращения называются полимераналогичными. Если же длина цепи в результате реакции изменяется, т. е. протекает деструкция, сшивание, разветвление или циклизация цепей, то эти превращения относятся к категории внутри или межмолекулярных взаимодействий, приводящих к образованию более низкомолекулярных или высокомолекулярных, линейных или нелинейных полимеров, а также сшитых (сетчатых) полимеров.[8, С.35]

Если при химических реакциях полимеров не происходит изменения длины макромолекулы, а образуются только новые функциональные группы на той же макромолекуле, то такие превращения называются полимераналогичными. Если же длина цепи в результате реакции изменяется, т. е. протекает деструкция, сшивание, разветвление или циклизация цепей, то эти превращения относятся к категории внутри или межмолекулярных взаимодействий, приводящих к образованию более низкомолекулярных или высокомолекулярных, линейных или нелинейных полимеров, а также сшитых (сетчатых) полимеров.[9, С.35]

Хорошо известно, что вредное влияние на механические свойства полипропилена оказывает ультрафиолетовая часть спектра солнечного света с диапазоном волн 2800—4000 А. Под действием кислорода полипропилен подвергается фотохимической деструкции, поэтому его необходимо стабилизировать. При облучении полипропилена УФ-светом в вакууме или инертной атмосфере одновременно со сшиванием протекает деструкция [40]. В присутствии сенсибилизаторов, например бензофенонов, полихлорированных бензолов, нафталинов и монохлористой серы (для пропилена она наиболее эффективна), доля сшитого продукта возрастает [41]; так, при применении монохлористой серы выход геля достигает 80% от веса облученного полипропилена [40].[5, С.129]

Целлюлозные и белковые волокнистые материалы в присутствии воды образуют дисперсию асимметричных фрагментов размером порядка молекулы. На начальных стадиях измельчения ткани разъединяются на отдельные волокна, а в дальнейшем и на фибриллы и в конечном итоге на асимметричные частицы, которые можно обнаружить с помощью микроскопа. У коллагена на последней стадии диспергирования протекает деструкция на молекулярном уровне, сопровождающаяся появлением некоторых качественно отличных от исходного продукта фрагментов со свойствами, напоминающими свойства линейной желатины.[7, С.114]

Полиизобутилены характеризуются высокой водо- и газонепроницаемостью даже при повышенной температуре. Они обладают высокими электроизолирующими свойствами: тангенс угла диэлектрических потерь 0,0004—0,0005, удельное объемное электрическое сопротивление > 1015 Ом-см, электрическая прочность 23 МВ/м. Высокомолекулярные полиизобутилены могут перерабатываться на вальцах, каландрах, шприц-машинах, в прессах только при повышенных температурах 100—200 °С, так как при низких температурах переработки происходит механическая деструкция макромолекул. Причем чем выше молекулярная масса полиизобутилена, тем интенсивнее протекает деструкция.[1, С.338]

В процессе хранения и эксплуатации изделий из полимеров под действием света, теплоты, радиоактивных излучений, кислорода, различных химических веществ может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера: появляется хрупкость, жесткость, резко снижается способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимеров увеличивается при приложении к ним неразрушающих механических напряжений, приводящих к развитию деформаций. Особенно этот эффект заметен при приложении многократно повторяющихся механических напряжений. При этом протекает деструкция и сшивание цепей, образуются разветвленные структуры, обрывки беспорядочно сшитых макромолекул, что изменяет в целом исходную молекулярную структуру полимера. Все эти нежелательные изменения приводят к старению полимеров.[2, С.239]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
8. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
10. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
11. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную