На главную

Статья по теме: Структурой полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Переработка литьем под давлением предоставляет большие возможности для управления надмолекулярной структурой полимеров, поскольку, варьируя параметры процесса заполнения формы, можно в широком диапазоне изменять характер течения расплава. Кроме того, при литье под давлением достигается интенсивный перенос тепла по крайней мере дня молекул, расположенных у поверхностей формующей полости. Иными словами, вероятность «замораживания» молекулярной ориентации, вызванной течением, наиболее высока вблизи поверхностных слоев изделия и наиболее низка в середине издечия, следствием чего является образование слоистых структур.[2, С.538]

Основное содержание химии и физики полимеров как самостоятельной отрасли науки — установление'взаимосвязи между структурой полимеров и их свойствами. Структура полимеров, как и всякого вещества, определяется двумя факторами: строением молекул (у полимеров — макромолекул) и характером их взаимной укладки в конденсированном состоянии. Способ взаимной укладки (упаковка) молекул определяет тип надмолекулярной структуры. Для установления количественных связей между параметрами структуры и свойствами нужно прежде всего выбрать действительно необходимые параметры структуры и выразить их количественно. Это должны быть такие параметры молекулярной и надмолекулярной структуры, задав которые, мы могли бы предсказать в общих чертах, каков будет комплекс физико-механических свойств полимера.[5, С.91]

Прочностные характеристики пластмасс, способность к переработке, стойкость к растрескиванию и другие свойства определяются не только составом и строением молекулярной цепи, но и надмолекулярной структурой полимеров. При плавлении полимеров в них сохраняются надмолекулярные образования, которые могут разрушаться при воздействии на расплав механических напряжений, вызывающих его течение. Это вызывает нестабильность свойств, в частности вязкости расплавов. В то же время при течении расплава происходит ориентация макромолекул, которая может вызвать механическое стеклование (кристаллизацию) полимера, т. е. материал потеряет текучесть.[8, С.274]

Значительно меньше известно о влиянии структуры на поведение полимера при переработке. Так, Грессли [60] установил, что величина полидисперсности оказывает основное влияние на высокоэластическое восстановление экструдата. Однако до сих пор не удается установить количественную связь между этими двумя характеристиками. Более того, не удается установить даже качественной связи между молекулярной структурой полимеров и их технологическим поведением, за исключением высокоэластического восстановления. Так, Миллер, исследовавший высокоэластическое восстановление цилиндрических заготовок для раздува [61 ], экспериментируя с практически идентичными образцами ПЭВП, получил совершенно другие результаты (подробно см. разд. 15.1).[2, С.176]

Фазовые переходы у полимеров имеют свои особенности. У полимеров отсутствуют температурные точки фазовых переходов, которые, как и не фазовые, происходят в определенных интервалах температур (см. 6.1). Средние температуры интервалов называют температурами перехода, причем у полимеров температуры плавления (7^) и кристаллизации (Гкр) не равны. Специфика фазовых состояний тесно связана с надмолекулярной структурой полимеров.[7, С.134]

В отличие от твердых полимеров для эластомеров а-процесс не представляет первостепенного интереса, так как он находится, как правило, вне температурной области процессов переработки каучука и эксплуатации изделий из резины. Учитывая это, основной интерес представляют медленные релаксационные процессы (обычно проявляющиеся при температурах выше Гс), природа и закономерности которых пока недостаточно исследованы. В частности, представляет интерес, какие именно релаксационные механизмы ответственны за эти процессы, сколько их, как они связаны со структурой полимеров.[4, С.125]

На рис. 1. 18 приведены восемь наиболее характерных релаксационных процессов, которые наблюдаются в наполненных сшитых линейных полимерах (резины). В стеклообразном состоянии обычно наблюдаются процессы у'. V и р. Это группа релаксационных механизмов, связанных с подвижностью боковых привесков макромолекул и отдельных ее участков намного меньших сегментов полимерной цепи. а-Процесс соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части каучука; а'-процесс — потере подвижности сегментов в жесткой части каучука, адсорбированного на активном наполнителе; Я-процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур; ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, связанной с подвижностью химических поперечных связей сшитого полимера. Таким образом, три релаксационных процесса ос', А и ф тесным образом связаны с коллоидно-дисперсной структурой полимеров.[3, С.61]

Обзор построен в соответствии со структурой полимеров. В частности, сначала мы рассмотрим системы палочкообразных молекул, затем системы блок-сополимеров и гребнеобразных полиме-[9, С.256]

Помимо тсхнич. интереса, исследование Г. полимерных материалов имеет большое научное значение. Связь Г. с химич. строением и структурой полимеров в значительной мере определяет методы создания новых полимерных материалов с заранее заданным значением проницаемости. Изучение Г., а также диффузии и растворимости газов в полимерах позволяет судить о структуре полимерных материалов и характере теплового движения макромолекул.[12, С.296]

Помимо технич. интереса, исследование Г. полимерных материалов имеет большое научное значение. Свя;ь Г. с химич. строением и структурой полимеров в значительной мере определяет методы создания новых полимерных материалов с чарапее заданным значением проницаемости. Изучение Г., а также диффузии и растворимости газов в полимерах позволяет судить о структуре полимерных материалов и характере теплового движения макромолекул.[13, С.293]

Отметим попутно, что наиболее часто цитируемые ЭМ данные о размерах микрофибрилл были получены в 40—50-х годах, когда как сами электронные микроскопы, так и методы препарирования зачастую не отличались большим совершенством. Закономерно поэтому, что абсолютные значения размеров микрофибрилл иногда требуют некоторого уточнения, особенно тогда, когда сопоставляют их с данными рентгенодифрак-ционных методов или пытаются установить связь между конкретными физико-химическими свойствами и структурой полимеров.[11, С.88]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
6. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
9. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
10. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
11. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
12. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
13. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную