На главную

Статья по теме: Молекулярной ориентации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Влияние молекулярной ориентации более или менее четко заметно для полимеров только при малых напряжениях сдвига, когда процесс перестройки надмолекулярной структуры еще слабо развит, и для олигомеров, когда молекулярная масса столь мала, что не образуется пространственной надмолекулярной структуры. Существенное проявление высокоэластической составляющей деформации наблюдается в возникновении нормальных напряжений. Хотя они и сопоставимы по значению с тангенциальными, влияние тех и других на физические свойства вязкого потока полимерной системы существенно различно. Тангенциальное напряжение вызывает вязкое течение и приводит к разрушению надмолекулярной структуры полимеров, тогда как нормальное напряжение приводит лишь к небольшому изменению гидростатического давления в потоке и практически его влияние на изменение структуры и вязкость полимерной системы несущественно. Уменьшение вязкости в процессе течения, наблюдаемое при относительно больших напряжениях, может быть объяснено изменением исходной надмолекулярной структуры полимера, если установлено, что его молекулярная масса при этом остается неизменной.[3, С.166]

Способность к молекулярной ориентации резин из некристаллизующихся каучуков исследовалась затем Лукиным44. При растяжении таких резин относительная интенсивность аморфного гало на рентгенограммах перераспределяется, в результате чего возникают текстуры. Появление текстур на аморфном гало является свидетельством ориентации участков молекулярных цепей под действием внешнего напряжения. После фотометрирования рентгенограмм по двум взаимно перпендикулярным направлениям—по экватору и меридиану—степень ориентации определялась по формуле ф=а/й—1, где qp—степень ориентации, изменяющаяся от 0 для нерастянутых образцов (а=Ь) до оо (предельная ориентация); а—интенсивность аморфного гало по экватору, b—по меридиану.[8, С.154]

Несмотря на то что величина молекулярной ориентации, определенная по двулучепреломлению, сильно зависит от температуры и деформации, другие физические свойства волокна практически не зависят от этих параметров. Клеерман объясняет это следующим образом. При низких температурах деформация волокна реализуется за счет подвижности структурных элементов с малыми временами релаксации. Перегруппировка структурных элементов с большими временами релаксации (перемещение целых молекулярных цепей) требует слишком большого времени. Поэтому закаленные образцы, полученные методом низкотемпературной вытяжки, будут содержать много ориентированных сегментов, присутствие которых проявляется в значительной оптической анизотропии, но эти сегменты при отжиге быстро разориентируются под влиянием броуновского движения. Именно это демонстрируют эксперименты по исследованию скорости усадки при температурах выше температуры стеклования.[1, С.70]

Так как U0 слабо зависит от молекулярной ориентации, то следует ожидать, что основной эффект изменения а с ориентацией проявится в изменении со, |3 и коэффициента А = А(а, Т), который с увеличением ориентации немного возрастает вследствие увеличения числа цепей на единичную площадь поперечного сечения и уменьшения сор. В предельно ориентированном состоянии, если UQ в соответствии с экспериментальными данными сохраняет то же значение, что и в неориентированном состоянии, флуктуационный объем со уменьшается в шесть раз. Это объясняется тем, что в ориентированном .состоянии на пути трещины рвется каждая цепь, поэтому Л=Х0, что в три раза меньше, а ХЛ=Х0, что в два раза меньше, чем у неориентированного полимера. Разрывная длина химической связи А,м не меняется. Если еще учесть, что с увеличением степени ори-ентации хрупкое состояние полимера при той же температуре приближается к нехрупкому состоянию, характеризующемуся коэффициентом концентрации напряжения в вершине трещины, в несколько раз меньшим, то прочность предельно ориентированного полимера по сравнению с неориентированным полимером в хрупком состоянии должна быть больше в JO — 20 раз.[3, С.328]

При вытяжке полимеров наблюдается процесс молекулярной ориентации. Последняя может быть «заморожена» последующим охлаждением вплоть до хрупкого состояния полимера. При одноосной вытяжке, имеющей наибольшее практическое значение, молекулярная ориентация характеризуется функцией распределения ориентации сегментов полимерных цепей относительно оси вытяжки. Мерой степени ориентации служит среднее значение квадрата косинуса , где 9 — угол между сегментом и осью вытяжки. При = 1/3 сегменты распределены по всем направлениям равномерно (неориентированный материал), при = l все сегменты ориентированы вдоль оси вытяжки (предельно ориентированный материал).[3, С.326]

Наиболее широко используемым методом определения молекулярной ориентации является измерение усадки при отжиге готовых изделий. Экспериментально метод этот крайне прост и основан на интуитивном допущении о существовании прямой зависимости между наблюдаемым изменением размеров и степенью дезориентации полимерных молекул. Этот метод можно использовать как для определения средней ориентации всего изделия, так и для исследования распределения ориентации по усадке тонких микротомных срезов (см. разд. 14.1).[1, С.76]

Участок вблизи фронта. Участок развития фронта потока рассматривался [29] при попытке моделирования распределения молекулярной ориентации в литьевых изделиях по экспериментальным наблюдениям. На рис. 14.10 показано такое распределение, полученное Вюбкеном и Менгесом [30] путем измерения усадки тонких срезов с литьевых изделий, изготовленных с помощью микротома, при повышенных температурах. Рис. 14.10, а иллюстрирует распределение продольной (по потоку) ориентации при двух значениях скорости впрыска. Кривые распределения ориентации имеют характерный вид: максимум ориентации располагается на поверхности изделия, затем наблюдается постепенное уменьшение ориентации, за которым следует второй максимум, после которого опять происходит постепенное уменьшение ориентации до полного ее отсутствия в центре изделия. На рис. 14.10, б показан другой характер распределения ориентации. Максимальное значение продольной ориентации наблюдается не на поверхности изделия, а на небольшом расстоянии от поверхности, а поперечная ориентация непрерывно уменьшается от максимума на поверхности до нуля в центре изделия.[1, С.531]

Эта зависимость (правило смешения) оказывается справедливой для характеристик, на которые не влияет анизотропия молекул независимо от степени молекулярной ориентации. Примером такой характеристики является плотность. Объемную долю кристаллической фазы, зная плотность поликристаллического полимера, можно ргссчитать из выражения:[1, С.71]

Рассматривая влияние изменений температуры и давления на процессы кристаллизации полимеров в литьевой форме, мы до сих пор не учитывали влияния молекулярной ориентации, возникающей вследствие течения при заполнении формы. Эти эффекты будут рассмотрены ниже.[1, С.59]

На стадии формования или на последующих стадиях переработки в полимере могут происходить существенные структурные изменения (например, изменение надмолекулярной структуры, развитие молекулярной ориентации), которые могут быть результатом целенаправленного воздействия, предпринимаемого для улучшения физических и механических характеристик полимера. Связь между процессами формования и изменением структуры имеет большое практическое значение. Понимание этой связи помогает выбирать оптимальный технологический процесс.[1, С.32]

Уайт опубликовал недавно результаты исследования связи между деформационной предысторией застеклованных полимеров и величиной двулучепреломления [52]. По его данным, зная поля напряжений в момент стеклования, можно определить величину молекулярной ориентации, измеряемой величиной двулучепреломления.[1, С.69]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
7. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
11. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
12. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
13. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
14. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
15. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
16. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
17. Семенович Г.М. справочник по физической химии полимеров том 3, 1985, 592 с.
18. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
19. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
20. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
21. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
22. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
23. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
24. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
25. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
26. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
27. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
28. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
29. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
30. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную