На главную

Статья по теме: Надмолекулярные образования

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Различные надмолекулярные образования и структуры в полимерах также существенно влияют на характер протекания химических реакций. Так, скорости реакций целлюлозы «ущественно зависят от ее морфологии. Многие реакции модификации целлюлозы протекают гетерогенно, так как она нерастворима или частично растворима в реакционной среде. Реагент часто вообще не достигает некоторых гидроксйльных групп в молекуле целлюлозы, прочно соединенных водородными связями:[3, С.222]

В аморфных полимерах надмолекулярные образования выражены меньше и изучены значительно слабее, чем в кристаллических. Поэтому о прохождении здесь ориентационного процесса столг, же детально говорить пока нельзя. Но, очевидно, все стадии, к-рыо наблюдаются при ориентировании крпсталлич. полимеров присущи и аморфным полимерам, только в значительно менее явной форме. Аморфные полимеры также могут растягиваться как с хорошо выраженной шейкой, так и практически без нее (равномерно). Из-за «рыхлости» надмолекулярной структуры у аморфных полимеров элементы этой структуры не могут удержать полимер в растянутом состоянии при снятии нагрузки (при томн-ре вытяжки), и поэтому образец будет сокращаться. Чтобы сохранить аморфный полимер ориентированным, надо его охладить — ослабить дезориентирующую роль теплового движения. Отметим, что если растягивать аморфный полимер при темп-ре много выше теми-ры стеклования, то он будет «течь» —, удлиняться без эффективного распрямления своих молекул. Т. обр., как для кристаллических, так и для аморфных полимеров должны выполняться следующие общие положения для того, чтобы растяжение полимера вызывало его ориентирование: в полимерном тело должна обеспечиваться достаточная гибкость и подвижность макромолекул; в то же время темп-pa вытяжки но должна быть слитком высокой, чтобы не распались контакты между молекулами (кристаллиты, узлы и др.), к-рые и «ответственны» за нагружение отрезков макромолекул, их распрямление и ориентирование. Как известно, деление полимеров на аморфные и кристаллические в значительной мере условно. Структурное состояние полимора определяется как условиями его перехода к данному состоянию (быстрое или медленное охлаждение, внешнее давление и др.), так и степенью стереорегулярности ценной молекулы (атак-тичность, изотактичность, синдиотактичность). Поэтому при ориентационной вытяжке могут наблюдаться своеобразные аморфно-кристаллические переходы.[25, С.260]

В аморфных полимерах надмолекулярные образования выражены меньше и изучены значительно слабее, чем в кристаллических. Поэтому о прохождении здесь ориентационного процесса столь же детально говорить пока нельзя. Но, очевидно, все стадии, к-рые наблюдаются при ориентировании кристаллич. полимеров присущи и аморфным полимерам, только в значительно менее явной форме. Аморфные полимеры также могут растягиваться как с хорошо выраженной шейкой, так и практически без нее (равномерно). Из-за «рыхлости» надмолекулярной структуры у аморфных полимеров элементы этой структуры не могут удержать полимер в растянутом состоянии при снятии нагрузки (при теми-ре вытяжки), и поэтому образец будет сокращаться. Чтобы сохранить аморфный полимер ориентированным, надо его охладить — ослабить дезориентирующую роль теплового движения. Отметим, что если растягивать аморфный полимер при темп-ре много выше темп-ры стеклования, то он будет «течь» — удлиняться без эффективного распрямления своих молекул.[29, С.258]

В растворах большей концентрации (начиная с 1 % и выше) образуются вторичные надмолекулярные образования, называемые часто ассоциатами макромолекул. Реакция может приобрести гетерогенный характер, причем наружные макромолекулы в ассоциатах реагируют в первую очередь, а дальнейшее проникновение низкомолекулярного реагента внутрь ассоциата может оказаться затрудненным. Наличие в ассоциате ориентированных участков усиливает эти затруднения. По этим причинам в концентрированных растворах полимеров химические реакции с низкомоле- ^ кулярными реагентами протекают мед- ^ леннее и до меньших степеней превра- g t щения. Продукт реакции неоднороден g по молекулярному составу (см. при- ^ мер на рис. 19.1). с, 40[3, С.277]

Структурные элементы, из которых образованы гибкоцепные полимеры (мелкомасштабные элементы, сегменты, надмолекулярные образования в виде микроблоков, частицы активного наполнителя, диполь-дипольные локальные поперечные связи, поперечные химические связи и т. д.), играют в релаксационных процессах роль кинетических единиц различных размеров и разной подвижности. Каждый тип кинетических единиц характеризуется своим наиболее вероятным временем релаксации т*, i=l, 2, ..., п (где п — число кинетических единиц различных типов и, следовательно, число различных релаксационных переходов, которые на спектре времен релаксации проявляются в виде тех или иных максимумов).[2, С.129]

При малых Р течение полимера происходит практически с неразрушенной структурой, так как в процессе медленного течения надмолекулярные образования успевают восстанавливаться. В соответствии с этим при малых Р скорость деформации у монотонно уменьшается. При больших же Р распавшиеся микроблоки не успевают полностью восстанавливаться и течение происходит в условиях частично разрушенной структуры полимера. Процесс разрушения идет тем быстрее и дальше, чем больше Р. С увеличением Р процесс разрушения надмолекулярной структуры и связанный с ним эффект уменьшения вязкости являются главными, вследствие[2, С.168]

При растворении полимеров или повышении температуры и переходе полимеров в вязкотекучее состояние возрастает сегментальная подвижность, крупные надмолекулярные образования, кристал пические области разрушаются, к функциональные группы становятся более доступными для низкомолекулярного реагента. Вероятность взаимодействия реагента с любой макромолекулой значительно возрастает. Поэтому продукты реакций в растворах или расплавах при температуре текучести или плавления значительно однороднее, чем полученные при температуре стеклования. Однако и в этом случае колебания концентрации растворов или температуры процесса вызывают существенные нарушения протекания химических реакций, особенно в высоковязких средах Это объясняется тем, что из-за высокой вязкости расплавов или концентрированных растворов замедляется диффузия реагентов к функциональным группам полимеров, что обусловливает неоднородность продуктов реакций При реакциях растворенных полимеров в процессах взаимодействия реагирующих частиц обычно принимают участие молекулы растворите 1Я и их ассоциаты. Поэтому при определении скорости и других параметров химических реакций в растворах необходимо учитывать молекулярные взаимодействия исходных частиц, промежуточных комплексов, продуктов реакции с молекулами окружающей среды. Среда наименее существенное влияние оказывает на гомочитические реакции н очень существенное на гетеролитичсскис В гемолитических реакциях, как правило, активными центрами являются свободные радикалы, в гетерочитических— ионы.[6, С.162]

Отмечено [48], что при температурах ниже Тс а аморфном полиэтилен-терефталате происходит постепенное упорядочение структуры и формируются кРУпные надмолекулярные образования. Внутри этих образований пачки макромолекулярных цепей значительно сближаются, а в межструктурных участках происходит разрыхление полимера. После 1,5 лет хранения при комнатной температуре на поверхности полиэфира проявляются дендрито-подобные фигуры (рис. 5.10, а) и монокристаллы (рис. 5.10, б). После выдерживания при 50 °С в течение 1 месяца вместо дендритоподобных фигур видны менее контрастные, но более плотно сложенные структуры, напоминающие сферолиты. Рентгеновские исследования убедили, что структура[4, С.111]

И кристаллические, и некристаллические полимеры характеризуются определенной надмолекулярной структурой (см. гл. 1), однако в вязкотекучем состоянии надмолекулярные образования полимеров непрочны и легко распадаются под действием тепло-[2, С.164]

Сжимаемость полимеров в этом состоянии ниже, чем у жидкостей, но выше, чем у твердых тел, так, для жидкости (н-гексана) сжимаемость составляет 1,6-10 9 Па~', для эластомеров в высокоэластическом состоянии — 5-Ю~'° Па~!, а для твердых тел (железо)—7-10~12 Па ', Для высокоэластического состояния характерен ближний порядок во взаимном расположении макромолекул, но существуют надмолекулярные образования различной степени упорядоченности[6, С.241]

При вязком течении происходит непрерывный процесс разрушения и перестройки его надмолекулярной структуры. Разрушение ее идет тем быстрее и дальше, чем больше Р и скорость вязкого течения. В процессе течения надмолекулярная структура полимера обратимо разрушается, причем тем сильнее, чем выше напряжение сдвига. При этом разрушение структуры происходит так, что сегменты полимерных цепей, входящие в надмолекулярные образования, отрываются по одному и энергия активации U перехода сегментов в свободное состояние равна энергии активации течения полимера. Отрыв сегментов от структурных микроблоков происходит под действием теплового движения, так как Р недостаточно велико, чтобы существенно влиять на процесс отрыва, поэтому в некоторой области изменения напряжений (/=const.[2, С.165]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
5. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
8. Смирнов О.В. Поликарбонаты, 1975, 288 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
11. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
12. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
13. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
14. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
15. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
16. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
17. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
18. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
19. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
20. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
21. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
22. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
23. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
24. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
25. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
26. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
27. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
28. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
29. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную