На главную

Статья по теме: Текстильной переработке

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При текстильной переработке и превращении в бумагу, маты и холсты прочность исходных элементарных волокон и нитей снижается из-за частичного разрушения, уменьшается также степень использования их прочности вследствие неодновременного нагружения материала при работе. Высокопрочные А. п. получаются в том случае, если удлинение при разрушении связующего больше или равно удлинению при разрыве наполнителя; при этом «используется» вся прочность последнего. Это условие соблЕОдается для стекло- и асбопла-•CTiiKOB, пластиков на основе борных волокон, углепластиков п не выдерживается в случае хлопчатобумажных и сшгтетнч. волокнистых наполнителей и связующих, имеющих жесткую трехмерную структуру. Распределение напряжений между компонентами нагруженного А. п. в первом приближении можно считать пропорциональным модулям упругости наполнителя и связующего. Кроме того, для получения пластика с максимальной прочностью наполнитель должен иметь в сечении форму, обеспечивающую лучшее заполнение объема пластика при наиболее полном смачивании его полимером. Наибольшей термостойкостью и способностью дли-[6, С.103]

При текстильной переработке и превращении в бумагу, маты и холсты прочность исходных элементарных волокон и нитей снижается из-за частичного разрушения, уменьшается также степень использования их прочности вследствие неодновременного нагружения материала при работе. Высокопрочные А. п. получаются в том случае, если удлинение при разрушении связующего больше или равно удлинению при разрыве наполнителя; при этом «используется» вся прочность последнего. Это условие соблюдается для стекло- и асбопла-стиков, пластиков на основе борных волокон, углепластиков и не выдерживается в случае хлопчатобумажных и синтетич. волокнистых наполнителей и связующих, имеющих жесткую трехмерную структуру. Распределение напряжений между компонентами нагруженного А. п. в первом приближении можно считать пропорциональным модулям упругости наполнителя и связующего. Кроме того, для получения пластика с максимальной прочностью наполнитель должен иметь в сечении форму, обеспечивающую лучшее заполнение объема пластика при наиболее полном смачивании его полимером. Наибольшей термостойкостью и способностью дли-[7, С.100]

Как правило, на поверхности волокон, подвергающихся текстильной переработке, присутствуют текстильные замаслива-тели, в состав которых входят такие вещества, как парафин, канифоль, поверхностно-активные вещества и др. [12, 20]. Эт;1 вещества ухудшают смачивание поверхности волокна, что отрицательно влияет на структуру поверхностного слоя эпоксидны* полимеров [17, 18]. Кроме того, входящие в состав замасливателей полярные соединения с различными активными группами могут взаимодействовать с реакционноспособными группами поверхности наполнителя, препятствуя образованию прочных связей полимера с наполнителем. Замасливатели повышают водо-поглощение наполнителей [21], и применение, например, стеклотканей без специальной сушки сильно увеличивает пористость материала. Количество этих веществ составляет около 1 % ог массы волокна, а поскольку высокопрочные армированные пластики содержат до 70% (масс.) волокна, их влияние на связующее может быть значительным, особенно если они сосредоточены в граничном слое около поверхности волокна. Для удаления текстильных замасливателей в некоторых случаях их выжигают при кратковременном нагреве стеклоткани при 350— 450 °С, но это приводит к значительному уменьшению прочности ткани и увеличивает ее стоимость,[3, С.220]

В последние годы было установлено, что появляющаяся в заметном количестве при текстильной переработке полиэфирного волокна «осыпь» на 95% представляет собой циклические тримеры. Трудности переработки полиэфирного волокна, вызванные выпадением осыпи олигомеров, описаны Сейнером [87]. По данным Куша [88], тримеры мигрируют на поверхность волокна при его термофиксации. Учитывая равновесный характер реакции олигоциклизации, трудно найти эффективные и одновременно экономически целесообразные меры по устранениЬ осыпи. Принципиально возможно, хотя и очень сложно, кинетически затормозить олигоциклизацию, идущую по схемам (3) и (4) дезактивированием или даже полным устранением концевых гидроксильных и карбоксильных групп. Но и в этом случае вначале придется удалить циклоолигомеры, образовавшиеся при поликонденсации. Конечно, вымывание циклических продуктов органическими растворителями практически абсолютно неприемлемо. Способ, основанный на том, что с понижением температуры равновесие сдвигается в сторону образования линейного полиэфира, по-видимому, мало практичен. По данным Купера и Сем-лина [73], для уменьшения содержания циклоолигомеров в 4 раза необходимо нагревать полимер при 235 °С в течение 18 ч. В результате такой продолжительной обработки может произойти термодеструкция полиэфира.[2, С.79]

Способность нити к дальнейшей текстильной переработке в большой степени зависит от предварительной обработки ее специальными препаратами.[4, С.155]

Для устранения электризации полиэфирного волокна при текстильной переработке жгут после термофиксации и охлаждения обрабатывают из форсунок антистатическими препаратами (например, ОС-20, ОП-10, альфоноксом, карбоноксом и др.), содержание которых на готовом волокне должно быть не ниже 0,3— 0,5%. Обработку антистатическими препаратами можно проводить перед гофрировкой жгута или после его тепловой обработки.[4, С.368]

Все элементарные нити должны быть склеены друг с другом, в противном случае при размотке, крутке и текстильной переработке комплексной нити отдельные элементарные нити разрываются, нить получается ворсистой, физико-механические характеристики и внешний вид изделий из ворсистых нитей ухудшаются.[4, С.436]

После сушки нити в сушилках, особенно на бобинах и отчасти в куличах, она имеет значительную структурную неоднородность, вследствие чего нить дает различную усадку при текстильной переработке, а при крашении появляются пятна .и полосатость. Вла-госодержание высушенной нити колеблется от 5—6 во внешних слоях до 16—18% во внутренних слоях.[4, С.165]

Полиэфирное волокно вследствие гидрофобности сильно электризуется Это создает трудности при его переработке, поскольку отдельные волокна отталкиваются друг от друга и прилипают к деталям машин. Поэтому при текстильной переработке обязательным условием является антистатическая обработка волокна и нитей, поддержание климатических условий влажности в цехах, снабжение оборудования устройствами ионизации.[2, С.236]

Большой модуль высокоэластичности П. в., особенно в мокром состоянии, является одним из важнейших положительных свойств, обеспечивающих сохранение размеров волокон и формы изделий, полученных из них. Недостатки П. в.— высокая хрупкость и склонность к фибриллированию. Высокая хрупкость проявляется при текстильной переработке и обусловливает понижение коэфф. использования прочности волокна в пряже. Прочность волокна в петле из-за хрупкости невысокая (см. таблицу). В ряде стран проводятся[8, С.506]

Болтиной модуль высокоэластичпости П. в., особенно в мокром состоянии, является одним из важнейших положительных свойств, обеспечивающих сохранение размеров волокон и формы изделий, полученных из них. Недостатки П. в.— высокая хрупкость и склонность к фибриллированию. Высокая хрупкэсть проявляется при текстильной переработке и обусловливает понижение коэфф. использования прочности волокна в пряже. Прочность волокна в петле из-за хрупкости невысокая (см. таблицу). В ряде стран проводятся[5, С.508]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Амброж И.N. Полипропилен, 1967, 317 с.
2. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
3. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
4. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
5. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
6. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
7. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
8. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
9. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.

На главную