На главную

Статья по теме: Температурах обработки

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

ТПА отличается от других синтетических каучуков, например полибутадиена, более широким ММР [2]. Даже при высокой вязкости полимера (вязкость по Муни при 100 °С около 125) наличие относительно низкомолекулярных фракций придает ему хорошую обрабатываемость и пластичность. С другой стороны, высокомолекулярные фракции вызывают высокие сдвиговые напряжения. Температурная зависимость вязкости по Муни для ТПА [36] показывает, что даже при температурах обработки вязкость его остается достаточно высокой, чтобы обеспечить быстрое поглощение и распределение наполнителей. ТПА легко компаундируется на вальцах или в смесителях типа Бенбери, резиновые смеси хорошо шприцуются и каландруются.[1, С.323]

На практике существует несколько методов предупреждения преждевременной вулканизации: 1) применение ускорителей с более высокой критической температурой действия или с замед-" ленным начальным периодом вулканизации (широким начальным индукционным периодом); 2) применение возможно более низких температур при обработке резиновых смесей; 3) хорошее охлаждение резиновых смесей и полуфабрикатов перед укладкой или закаткой в рулоны; 4) применение ингредиентов, понижающих активность ускорителей вулканизации при обычных температурах обработки резиновых смесей; к таким ингредиентам относятся органические кислоты и ангидриды — бензойная и фталевая кислоты и особенно фталевый ангидрид, но все эти вещества одновременно задерживают вулканизацию.[3, С.133]

Было установлено, что при температурах обработки резиновых смесей происходит термическое превращение[5, С.235]

Рис. 2.7.Прочностные характеристики резиновых смесей и вулканизатов при разных частотах вращения п и температурах обработки в червячной машине:[4, С.72]

Такими ускорителями являются ароматические меркаптаны, дисульфиды и их соли в дозировках 0,1—0,3 масс. ч. на 100 масс. ч. каучука. Химические пластикаторы действуют при любых температурах обработки каучуков, но наиболее активны они выше 80 °С. Следует учесть, что для сернорегулированных хлоропреновых каучуков эффективными пластикато-рами при смешении или другой механической обработке являются ускорители серной вулканизации каучуков — каптакс, альтакс, дифенилгу-анидин.[6, С.10]

Развитие системы сопряжения, а также образование межмолекулярных связей при пиролизе полимеров обусловливают образование жестких макромолекул. Благодаря малой подвижности макромолекул п отсутствию области вязкого течения полимеры при К. способны сохранять свою морфологию. Это послужило основой для разработки способов получения углеродистых материалов в виде волокон, тканей, войлока, пеномате-риалов и др. (см. Углеродопласты, Углеродные нити). Морфология полимера сохраняется даже при высоких температурах обработки (2800 °С), если подобраны условия К., при которых скорость образования л-со-пряженных и межмолекулярных связей, увеличивающих жесткость макромолекул, преобладает над скоростью процессов, ведущих к образованию пизкомо-лекулярных веществ п появлению течения. При К. ориентированных полимерных пленок п волокон установлено соответствие между исходной ориентацией макромолекул и преимущественной ориентацией углеродных базисных слоев параллельно поверхности пленки или оси волокна.[8, С.479]

Развитие системы сопряжения, а также образование межмолекулярных связей при пиролизе полимеров обусловливают образование жестких макромолекул. Благодаря малой подвижности макромолекул и отсутствию области вязкого течения полимеры при К. способны сохранять свою морфологию. Это послужило основой для разработки способов получения углеродистых материалов в виде волокон, тканей, войлока, пеномате-риалов и др. (см. Углеродопласты, Углеродные нити). Морфология полимера сохраняется даже при высоких температурах обработки (2800 °С), еслп подобраны условия К., при которых скорость образования л;-со-пряженных и межмолекулярных связей, увеличивающих жесткость макромолекул, преобладает над скоростью процессов, ведущих к образованию низкомолекулярных веществ и появлению течения. При К. ориентированных полимерных пленок и волокон установлено соответствие между исходной ориентацией макромолекул и преимущественной ориентацией углеродных базисных слоев параллельно поверхности пленки или оси волокна.[10, С.476]

температурах обработки полимера механическим силам труднее преодолевать силы взаимодействия между макромолекулами, и проскальзывание молекул друг относительно друга в поле механических напряжений почти не имеет места, тогда как при повышении температуры эффект скольжения макромолекул возрастает. Следовательно, механодеструкция имеет отрицательный температурный коэффициент, т. е. число актов разрывов химических связей в главных цепях растет с понижением температуры. Это видно из рис. 17.2, где показано изменение пластичности натурального каучука с температурой при его механической переработке. Уменьшение молекулярной массы (т. е. рост пластичности) ниже 100°С вызван указанным эффектом увеличения механодеструкции при снижении температуры обработки. Возрастание пластичности при температурах выше 100°С обусловлено скольжением макромолекул друг относительно друга и химическим взаимодействием их с кислородом воздуха, что приводит к деструкции макромолекул (см. ниже), активированной механическими напряжениями.[2, С.251]

механодеструкции сильно зависит от температуры. При низких температурах обработки полимера механическим силам труднее преодолевать силы взаимодействия между макромолекулами и проскальзывание -молекул друг относительно друга в поле механических напряжений почти не имеет места, тогда как при повышении температуры этот эффект возрастает. Следовательно, механодеструкция имеет отрицательный температурный коэффициент, т. е. число актов разрывов химических связей в главных цепях растет с понижением температуры. Это видно из рис. ПО, где показано изменение пластичности натурального каучука с температурой при механической его переработке. Уменьшение молекулярной массы (т. е. рост пластичности) ниже 100° С вызван указанным эффектом увеличения механодеструкции при снижении температуры обработки. Возрастание пластичности при температурах выше 100° С обусловлено скольжением од аир о молекул друг относительно друга и химическим взаимодействием их с кислородом воздуха, что приводит к деструкции макромолекул (см. ниже), активированной механическими напряжениями.[7, С.188]

механодеструкции сильно зависит от температуры. При низких температурах обработки полимера механическим силам труднее преодолевать силы взаимодействия между 'макромолекулами и проскальзывание молекул друг относительно друга в поле механических напряжений почти не имеет места, тогда как при повышении температуры этот эффект возрастает. Следовательно, механодеструкция имеет отрицательный температурный коэффициент, т. е. число актов разрывов химических связей в главных цепях растет с понижением температуры. Это видно из рис. ПО, где показано изменение пластичности натурального каучука с температурой при механической его переработке. Уменьшение молекулярной массы (т. е. рост пластичности) ниже 100° С вызван указанным эффектом увеличения механодеструкции при снижении температуры обработки. Возрастание пластичности при температурах выше 100° С обусловлено скольжением 'Макромолекул друг относительно друга и химическим взаимодействием их .с кислородом воздуха, что приводит к деструкции макромолекул (см. ниже), активированной механическими напряжениями.[9, С.188]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
5. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
6. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
7. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
8. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную