На главную

Статья по теме: Виниловых соединений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Поведение виниловых соединений по отношению к перекиси бензоила во многих отношениях аналогично поведению ароматических соединений. Бензоатные радикалы, первоначально образующиеся при распаде перекиси бензоила, могут или присоединяться к двойной связи, давая начало полимерным цепям, или отщеплять молекулу двуокиси углерода с образованием фенильного радикала. Последний также может присоединяться к двойной связи.[11, С.48]

В случае полимеризации виниловых соединений щелочными катализаторами карбанионный механизм не согласуется с наличием влияния природы металла на структуру полимера и влиянием полярности связи углерод — металл на состав сополимеров стирола и бутадиена. Механизм ступенчатого присоединения мономера к связи углерод — металл не согласуется с наличием индукционного периода, отсутствием зависимости скорости полимеризации изопрена при высоких концентрациях бутиллития от концентрации последнего. Кроме того, мономеры, обладающие примерно равной полярностью и поляризуемостью (например, стирол и бутадиен), сополийе-ризуются со скоростями, характерными для раздельной полимеризации. На основе приведенного экспериментального материала выдвигается гипотеза о том, что активными центрами при полимеризации виниловых соединений, вероятно, являются малоустойчивые комплексные образования ион-дипольного характера, сольватированные молекулами мономера, а полимеризация виниловых соединений катализаторами щелочного типа относится к особому случаю цепного катализа.[20, С.536]

В 1888 г. Фаворский синтезировал метилвинилэтиловый эфир 17], ,и этим открытием было положено начало развития химии виниловых соединений. Классическая реакция Фаворского основана на взаимодействии спиртов с ацетиленом в присутствии едкого калия. В 1940 г. Фаворский и Шостаков-ский 18] теоретически обосновали и экспериментально доказали целесообразность работы с ацетиленом под давлением и при повышенных температурах. Ацетилен хорошо растворяется в виниловых эфирах, а благодаря большей концентрации ацетилена ускоряется винилирование. Установлено, что реакция протекает успешно при 140—160°. Берут 5—10% КОН от исходного спирта, начальное давление ацетилена 14—15 атм. Выход алжилвиниловых эфиров достигает "95%. Винилирование распространилось на спирты, гликоли, глицерин, фенолы, циклические спирты, аминоспирты, углеводы, оксикислоты и другие соединения.[2, С.21]

Крупный вклад в развитие химии виниловых соединений внес-ш фундаментальные труды советских ученых М. Ф. Шостаков-жого, С, Н. Ушакова и их. школ.[7, С.9]

Хотя давно известно, чго свет вызывает полимеризацию виниловых соединений, имеется мало работ, посвященных систематическому исследованию фотохимического инициирования. Лишь в одной серии работ [116, 126—130] фотоинициирование полимеризации в жидкой фазе было предметом специального исследования. Ниже излагаются основные результаты этих работ.[11, С.59]

Катализаторы второй группы способствуют полимеризации виниловых соединений с повышенной электронной плотностью у двойной связи.[1, С.254]

Химические исследования показали, что полимеризация простых виниловых соединений приводит к регулярному построению полимерной цепи типа «голова к хвосту» [1, 2]. Отсюда следует, что скорости реакций (I) — (IV) заметно отличаются друг от друга. Для поливинилацетата этот вывод был проверен экспериментально Флори и Лейтнером ГЗ]. Если поливиниловый спирт, полученный гидролизом поливинилацетата, обработать йодной кислотой — специфическим реагентом на 1,2-гликоли, то происходит разрыв связи С — С между теми атомами углерода, к которым присоединены гидроксильные группы, причем спиртовая группа окисляется в альдегид:[11, С.88]

Среди карбоцепных полимеров наибольшее значение имеют полимеры виниловых соединений, диеновых углеводородов и их производных. К важнейшим органическим гетероцепным полимерам относятся полиэфиры, полиамиды, алкиды, фенолоальдегид-ные, мочевиноальдегидные, эпоксидные, полиформальдегид и такие природные высокомолекулярные вещества, как белки, целлюлоза и нуклеиновые кислоты.[8, С.281]

Предложенный способ полимеризации и сополимериза-:ции 'высококипящих виниловых соединений от ранее известных отличается тем, что процесс ведут в вакууме и при пониженной температуре. При этом деполимеризация не имеет места, а полимеры получаются чистыми.[2, С.95]

Перекись бензоила является одним из наиболее употребляемых инициаторов полимеризации виниловых соединений.[11, С.41]

Б e M ф о p д К., Б a p б У., Д ж е н к и н с А., О н ь о н П. Кинетика радикальной полимеризации виниловых соединений. Пер. с англ. Под ред. Ю. М. Ма-линского. М., Издатннлит, 1961. 348 с,[6, С.42]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Труды Л.Х. Мономеры. Химия и технология СК, 1964, 268 с.
3. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
4. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
5. Блаут Е.N. Мономеры, 1951, 241 с.
6. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
7. Сидельховская Ф.П. Химия N-винилпирролидона и его полимеров, 1970, 151 с.
8. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
9. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
10. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
11. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
12. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
13. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
14. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Бажант В.N. Силивоны, 1950, 710 с.
19. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
20. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
21. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
22. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
23. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
24. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
25. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
26. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную