На главную

Статья по теме: Увеличению прочности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Шероховатость и пористость поверхности волокон способствует увеличению прочности связи, однако синтетические волокна, формуемые из расплава полимера, имеют гладкую поверхность, и только у вискозных волокон, формуемых из раствора ксанто-гената целлюлозы, поверхность имеет некоторую шероховатость. На практике в большинстве случаев применяют латексные пропиточные составы, поэтому с увеличением гидрофобности волокон ухудшается их смачиваемость и как следствие затрудняется достижение высоких значений прочности связи. Полимеры волокон и адгезива существенно различаются по полярности (плотность энергии когезии составляет 700 1000 и я^ЗОО Дж/см;! соответственно), поэтому собственно адгезионное взаимодействие между ними по диффузионному механизму незначительно. Прививка на поверхность волокон ряда неполярных мономеров (бутадиен, стирол и т. п.), уменьшающая различие в полярностях контактирующих материалов и создающая возможность их совулкани-зации, не привела к заметному, повышению прочности связи. Различные способы модификации поверхности волокон (источниками свободных радикалов, физическими воздействиями, в том числе низкотемпературной плазмой) также оказались малоэффективными.[7, С.28]

Повышенное содержание хлора в суспензионном хлорированном ПВХ способствует нек-рому увеличению прочности при растяжении, однако одновременно возрастает хрупкость материала. Поэтому в пром-сти используют полимер, хлорированный лишь до 64 — 66%, часто в композиции с полиэтиленом, хлорированным полиэтиленом и поливипилхлоридом. Ниже приведены нек-рые свойства ПВХ, хлорированного в гете-[26, С.296]

Ориентация макромолекул. Влияние ориентации рассмотрено в гл. 12. Ориентация всегда приводит к увеличению прочности в направлении ориентации и снижению ее в поперечном направлении. Для уменьшения анизотропии прочности полимер ориентируют в двух взаимно перпендикулярных направлениях. Прочность листов и пленок после двухосной ориентации увеличивается в обоих направлениях.[4, С.207]

После того как весь образец перейдет в «шейку», рвется уже ориентированной! материал, что приводит к увеличению прочности. При небольших вытяжках разрыв образца близок к обычному хрупкому разрушению; при больших—образец нспытывае, хрупко-волокнистый разрыв. Для некоторых полимеров, Б частности предварительно вытянутых, кривая деформации (см, рис. 33> не имеет максимума п растяжение образца происходит без образования «шейки». Это объясняется различным характером упрочнения, приводящим либо к растяжению без «шейки», когда'упрочнение с вытяжкой идет быстро, либо к растяжению с «шейкой;., когда упрочнение с вытяжкой идет медленно. В координатах истинное напряжение—растяжение максимум либо исчезает, либо сгио. кривой после него становится незначительным.[16, С.70]

Расширение спектра релаксации, например, за счет введения наполнителей (сс'-переход) или присутствия полярных групп (л-переход), приводит к увеличению прочности. Так, некапол-ненный аморфный цыс-1,4-гюлибутад11ен имеет кратковременную прочность при растяжении 1 — 1,5 МПа, а для нснаполиенного сополимера бутадиена с нитрилом акриловой кислоты (60.40) прочность повышается до 8 МПа. Наполнение цис-1,4-полнбу-тадиена техническим углеродом приводит к еще большему росту прочности (до 20 МПа).[8, С.333]

Вытяжка и прессование покрышки в процессе вулканизации приводят к уплотнению деталей покрышки, уменьшению ее толщины, к более глубокому проникновению резиновых смесей в ткань и таким образом к увеличению прочности связи между деталями покрышки, к распрямлению нитей в деталях и выравниванию напряжений в слоях и нитях каркаса. Все это оказывает благоприятное влияние на качество покрышек.[5, С.458]

При этом частично протекают реакции сшивания полимера, что вместе с образованием продуктов конденсации в полимерной матрице ведет к росту прочности, например, сырых резиновых смесей и вулканизатов или увеличению прочности связи модифицированного неполярного полимера с полярными волокнами. Последнее крайне важно для устойчивой и длительной эксплуатации полимертекстильных композиционных материалов (шины, транспортерные ленты, ремни, рукава и другие изделия). Это направление модификации полимеров разработано в СССР в содружестве вузов с промышленностью и в настоящее время широко используется, в частности, для модификации композиций на основе синтетических эластомеров (модификаторы РУ-1, АРУ, алрафор и др.), часть из которых запатентована в развитых капиталистических странах.[4, С.288]

По истечении установленного времени вулканизации из корпуса автоклава выпускают пар, на что требуется 1 мин, и из варочных камер выпускают горячую воду в течение 5—6 мин. После этого формы с покрышками и варочные камеры охлаждают. Охлаждение повышает срок службы варочных камер, приводит к увеличению прочности резины и прочности связи резины с тканью в каркасе покрышек, а также уменьшению возможности расслоения в каркасе и срыва шашек рисунка протектора при выемке покрышек из форм. Охлаждение необходимо для прекращения процесса вулканизации и для улучшения условий труда при перезарядке автоклавов и форм.[5, С.462]

Как по первой модели (формула VI. 10), так и по второй [формулы (VI. 13) и (VI. 14)] коэффициент перегрузки уменьшается с увеличением степени ориентации, характеризуемой cos2 6, т. е. в ориентированном полимере внешняя нагрузка распределяется более равномерно по цепям (это как раз и приводит к увеличению прочности полимера). Однако на опыте получена значительно более сильная зависимость PI от cos2 9, чем это следует из модели упругого континуума. Вторая модель лучше объясняет зависимость коэффициента перегрузки капрона от ориентации [16, с. 278].[3, С.205]

Несмотря на отсутствие кристаллитных образований в стандартных образцах полистирола структуру его можно несколько упорядочить растяжением при повышенной температуре. Растягивание образца в одном направлении (одноосная ориентация), а тем более одновременное растягивание его в двух взаимно-перпендикулярных направлениях (двухосная ориентация) способствует увеличению прочности полимера и уменьшению внутренних напряжений в нем, что приводит к повышению упругости. Поэтому одноосно ориентированный полимер применяют в виде пленок или нитей. Двухосной ориентацией листового полистирола повышают его предел прочности при растяжении на 20—30%, относительное удлинение в Ъ раз и удельную ударную вязкость в 3—6 раз.[1, С.364]

Температуры стеклования и кристаллизации, а также скорости кристаллизации различных полимеров зависят от химического строения макромолекул и степени гибкости, характерной для макромолекул данного типа. С повышением гибкости макромолекул снижаются температуры плавления и стеклования, все больше увеличивается интервал между ними и возрастает скорость кристаллизации. Аморфный полиэтилен нельзя получить быстрым охлаждением полимера, так как скорость его кристаллизации достаточно велика. Температура плавления полиэтилена 113—135", температура стеклования от --60 до—50°. Полиамиды отличаются высокой полярностью, к тому же водородные связи между макромолекулами полиамидов способствуют увеличению сил межмолекулярного сцепления. Это приводит к снижению гибкости макромолекул и увеличению прочности кристаллических образований (Т1,,,, полиамидов 180—220°, Тс -"--45—70°). Скорость кристаллизации полиамидов настолько мала, что при быстром охлаждении тонкой пленки полиамида его можно сохранить в аморфном состоянии.[1, С.55]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Белозеров Н.В. Технология резины, 1967, 660 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
10. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
11. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
14. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
15. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
16. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
17. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
18. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
19. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
20. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
21. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
22. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
23. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
24. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
25. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
26. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
27. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
28. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
29. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
30. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
31. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
32. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
33. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
34. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную