На главную

Статья по теме: Экстремальная зависимость

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Экстремальная зависимость скорости разложения ксантогената от концентрации кислоты свидетельствует о том, что реакция обусловлена концентрацией Н-ионов в реакционной среде. Это подтверждается также замедлением скорости разложения при добавлении к кислоте солей с одноименным анионом, например сульфата натрия. Зависимость скорости разложения ксантогената от концентрации ионов водорода подробно исследована в работах Архангельского [51] и Яоста [55]. Для того чтобы исключить влияние диффузии, реакцию проводили в гомогенной среде. Следует отметить, что ксантогенат целлюлозы находится в растворенном состоянии только при высоких степенях этерификации •у>50 и в сравнительно узком диапазоне кислой области (рН>4). Зависимость \ от продолжительности реакции при 20°С для различных значений рН реакционной среды приведена на рис. 7.24.[7, С.190]

Экстремальная зависимость скорости структурообразования может быть использована в производственных условиях для направленного регулирования свойств волокон. Так например, для получения высокомолекулярного волокна, со структурными элементами сравнительно больших размеров для замедления скорости нуклеации температуру осадительной ванны понижают до 20 — 35 °С. Напротив, при получении высокопрочных кордных нитей с[7, С.203]

Экстремальная зависимость адгезионной прочности от содержания функциональных групп объясняется, очевидно, постепенным понижением подвижности сегментов макромолекул адгезива с увеличением содержания в них полярных групп. При этом возрастает жесткость макромолекул, снижается вероятность контакта функциональных групп адгезива и субстрата. Таким образом, повышение внутри- и межмолекулярного взаимодействия в пределах одной фазы препятствует осуществлению взаимодействия на границе раздела фаз.[10, С.40]

Экстремальная зависимость адгезионной прочности от удельной энергии когезии адгезива обнаружена также в системе пленка — адгезив — пленка, причем максимальное значение адгезионной прочности наблюдается (так же, как и в рассмотренном выше случае, см. рис. 11.17) при совпадении значений плотности энергии когезии.[10, С.83]

Существует экстремальная зависимость максимальной степени дополнительной ориентации в месте разрыва от концентрации сажи в вулканизате [314] (рис. IV. 17). Величина напряжения, при котором начинается заметное образование микронадрывов, определяется прочностью связи между частицами наполнителя и полимером. При этом надо также учитывать, что вследствие образования граничного слоя снижается деформируемость связанных молекул. Максимум на кривой (рис. IV. 17) свидетельствует о наличии двух противоположных процессов: с одной стороны, с увеличением количества сажи увеличивается внутреннее трение, затрудняющее процесс ориентации, с другой стороны, число связей между частицами наполнителя и полимером увеличивается, вследствие чего развиваются более высокие напряжения, вызывающие значительную дополнительную ориентацию. При использовании активного наполнителя разрастание области разрыва происходит в ориентированном материале, и скорость этого разрастания заметно уменьшается, что сопровождается увеличением прочности. С другой стороны, увеличение содержания наполнителя приводит к завершению[9, С.172]

На .рис. 2.13 (Представлена зависимость (прочности три растяжении от степени сшивания для вулканизатов 1ХОПЭ, отличающихся продолжительностью вулканизации, типом и содержанием аддукта, а также наличием оксида магния. Полученная экстремальная зависимость является типичной для эластомеров с кова-лентными связями [216]. Однако в (максимуме кривой статическая прочность составляет 50—70 МПа (13—16 МПа на условное сечение), что на иторядак больше, чем для обычных (с ковалент-ными 'поперечными связями) ненаполненных вулканизатов нерегулярных «аучуков. Приведенные данные определенно указывают на то, что в результате сильного межмолекулярного (Взаимодействия лодвесок и (поперечных связей .в вулканизатах ХСПЭ ,с ами-НОЭПОКСИДНЫ1МИ аддуктами возникают ассоциаты, (представляющие ' собой жесткие (микрообласти — частицы дисперсной фазы, которые подобно лолистнрольным доменам IB термоэластопластах распределены ,в среде каучука.[3, С.87]

Для эластомеров с уретановой поперечной связью получена экстремальная зависимость сопротивления разрыву от концентра-[1, С.542]

Для обоих типов вулканизатов наблюдается обычная для эластомеров экстремальная зависимость прочности от степени сшивания (рис. 3.2) с максимумом практически в одной области сшивания. Повышенная статическая прочность вулканизатов Б при одинаковой степени сшивания и одинаковом количестве аддукта ФГМ-1 сви-[8, С.140]

При всех выбранных режимах отверждения (рис. 5.3 и 5.4) наблюдается экстремальная зависимость адгезионной прочности от продолжительности отверждения. При этом с повышением температуры сокращается интервал времени от начала отверждения до достижения максимальной прочности.[5, С.118]

Если в резинокордной системе применять адгезивы на основе различных латексов, то здесь проявляется экстремальная зависимость прочности связи от плотности энергии когезии (рис. 11.18). Рассмотрим резинокордную систему, в которой применяются адгезивы на основе сополимера дивинила с 2-метил-5-винилпиридином. Плотность энергии когезии. дивинилового каучука составляет 67,8 кал/см3. Плотность энергии когезии сополимера дивинила с 2-метил-5-винилпиридином, например ДМВП-15А [232], равна 69,7 кал/см3. Можно предположить, что по мере увеличения содержания в адге-зиве пиридиновых группировок энергия когезии адгезива будет возрастать, достигнет значения удельной энергии когезии натурального каучука (68, 9 кал/см3), а затем превысит это значение. Поэтому в резинокордной системе на основе натурального каучука следует ожи-цать экстремальной зависимости адгезионной прочности от содержания пиридиновых группировок в адгезиве. Такая зависимость действительно получена экспериментально (см. рис. 11.18, кривая 1). В случае резины на основе полихлоропренового каучука, имеющего удельную энергию коге-[10, С.83]

Детальный анализ рис. 8 позволяет сделать вывод, что при введении олигомера в каучук разными способами имеется экстремальная зависимость <тк от количества вводимого олигомера. Для олигомера СКИ-ГЗ максимум <тк приходится на 5-8 % масс., а для СКИ-ГД диапазон шире (3-10 % масс.) и сильно зависит от способа введения олигомера.[4, С.143]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
3. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
4. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
5. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
6. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
7. Серков А.Т. Вискозные волокна, 1980, 295 с.
8. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
9. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
10. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
11. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
12. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
15. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную