На главную

Статья по теме: Деформирования полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Конформационные переходы цепи с кинк-изомерами, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода: если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конфор-мационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию и аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами; можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СН2-группы [17, 18]. Следовательно, чтобы преобразовать' весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с-1 при температуре ниже точки плавления, т. е. при 400 К. Теперь можно рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с~'. При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного[2, С.130]

При анализе процессов деформирования полимеров в высокоэластическом состоянии подвижность кинетических элементов .структуры (сегментов) принимается аналогичной подвижности частиц идеальных газов. Это допущение оказывается справедливым для деформаций не более 50%. Большие деформации, характерные для полимеров в высокоэластическом состоянии, реализуются за счет не только евэ, но и еу и еп (см. рис. 3.7). Эти деформации обусловливают изменение не только А^, но и энтальпии полимера ЛЯ.[1, С.139]

Рис. 2.10. Примеры характерного одноосного деформирования полимеров.[2, С.37]

Таким образом, предложено много модельных представлений деформирования полимеров. Любое из них можно преобразовать в модельное представление разрушения, если в рамках справедливости этих моделей удастся получить адекватный критерий разрушения. Необходимо так сформулировать этот[2, С.53]

В монографии ученого из Швейцарии рассматриваются природа и закономерности разрушения, а также деформирования полимеров. Материал изложен с позиций механики твердого тела и физики процесса разрушения химических и межмолекулярных связей.[2, С.4]

Необходимо исследовать, какие из свойств цепи эффективно выражаются с помощью этих модельных представлений деформирования полимеров. Известно, что рассмотренные ранее частично кристаллические образцы являются поликристаллическими твердыми телами, в которых имеются распределенные аморфные области с зачастую плохо определенными границами и столь же нечетко определенным взаимодействием между аморфными и кристаллическими областями. В упрощенном[2, С.44]

Как было отмечено ранее, различный вид кривых напряжение—деформация связан не с определенным химическим строением полимеров, а с их физическим состоянием. При соответствующем выборе внешних условий нагружения можно наблюдать переход от одного типа поведения (например, хрупкое, кривая /) к другому (пластичное, кривая 3). Эти феноменологические особенности процесса деформирования полимеров детально рассмотрены в работах [14, 52—53, 55—57] и в работах, на которые сделаны ссылки в гл. 1 !). Уменьшение[2, С.37]

Простейшие случаи деформирования полимеров 243[3, С.243]

Нсравновесный характер деформирования полимеров в высокоэластическом состоянии определяет явления размятчения и гистерезиса. Гистерезис — это отставание во времени реакции потимера на изменяющееся внешнее воздействие. Например, под влиянием растягивающего напряжения деформация — реакция на механическое воздействие — отстает от напряжения. Рассмотрим явисние гистерезиса при растяжении по шмера в статических неравновесных условиях Растянем образец этас-томсра, макромолекулы которого сшиты редкими химическими связями, до удлинения г\ (точка А на рис. 511) и затем со кратим его с топ же скоростью до о —0. Кривые растяжения ОА и сокращения АС' не совпадают, образец полностью не сокращается, а имеет остаточную деформацию е =Ё2.[5, С.291]

Экспериментальными доказательствами анизотропии деформирования полимеров являются двойное лучепреломление и расщепление линии ЯМР. Показано [32], что фундаментальная модель для высокополимеров - идеальная гауссова цепь - не дает расщепления линий в спектре ЯМР, а вызывает только уширение линии при деформации полимера, что создает предпосылки для выдвижения усовершенствованных моделей. Разработано аналитическое выражение для второго момента формы линии ЯМР в зависимости от степени растяжения образца.[6, С.276]

Существуют две точки зрения, объясняющие механизм разрушения и деформирования полимеров. Результаты, полученные Регелем с сотр. [163] при изучении влияния ультрафиолетового облучения на долговечность и ползучесть ориентированных термопластов в вакууме и на воздухе, приводят к выводу, что в основе деформи-[8, С.246]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
11. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
12. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
13. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
14. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
15. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
16. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
17. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную