На главную

Статья по теме: Измерения плотности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Типичный дилатометр, использующийся для измерения плотности полимеров, показан на рис. 31.4. Увеличение или уменьшение объема с температурой определяют регистрацией изменения уровня ртути в капилляре дилатометра. Точность этого метода составляет ±0,001 г/см3.[6, С.145]

Робертсон [31] дал подробный анализ результатов исследования надмолекулярной организации полимеров, находящихся в аморфном состоянии, методами измерения плотности, дифракции рентгеновских лучей и нейтронов под малыми и большими углами, электронной микроскопии и электронографии, изучения термоупругости, двойного лучепреломления под нагрузкой, рэлеев-ского рассеяния и т. д. На основании такого анализа был сделан вывод о том, что в аморфных полимерах существует локальная упорядоченность, которая приводит к сохранению анизотропии на расстоянии порядка нескольких десятков ангстрем. Результаты малоуглового рассеяния рентгеновских лучей показывают, что упорядоченные области не имеют четких границ. Робертсон полагает, что отсутствуют экспериментальные доказательства, подтверждающие наличие в аморфных полимерах доменов размером около 100 А с регулярными равновесными структурами. По его мнению, доменные структуры, которые наблюдались с помощью электронных микроскопов и малоуглового рассеяния рентгеновских лучей, обусловлены существованием загрязнений или неравновесных структур.[8, С.67]

В лаборатории имеются вискозиметры Муни для выборочной проверки вязкости маточных смесей, динамометры Т-500 для проверки модуля упругости, автоматические приборы для измерения плотности и твердости. Этими же приборами предполагается проводить более широкий контроль для 30—40% изготавливаемых смесей.[4, С.94]

При условии корректной интерпретации из этих различий можно извлечь дополнительную информацию о деталях структуры кристалло-аморфных полимеров. Заметим только, что нужно с осторожностью использовать измерения плотности для оценок степени кристалличности. Хотя собственная дефектность кристаллических областей может несколько меняться, это мало отражается на их плотности, которую в первом приближении можно считать одной и той же. Напротив, в зависимости от расположения межкристаллитных цепей, входящих в аморфные области (близко или далеко от поверхности кристаллита, степени натяжения этих цепей, наличия свободных концов), плотность аморфных областей может колебаться довольно сильно и ее нельзя принимать равной плотности 100%-го аморфного блочного полимера того же состава.[5, С.93]

На процесс кристаллизации значительное влияние оказывает молекулярная масса полиэфира. По данным дилатометрии [46], по мере повышения молекулярной массы склонность полимера к кристаллизации падает. Такой вывод можно сделать и из результатов измерения плотности полимеров с разной молекулярной массой (рис. 5.12).[3, С.114]

Плотность аморфного полипропилена, определенная при помощи инфракрасной спектроскопии [27], составляет 0,8500 или 0,8515 г/см3 [28], в зависимости от используемого метода расчета. Значение плотности полностью кристаллического полимера можно найти рентгенографическим методом, определив размеры элементарной ячейки кристалла. Натта [27] приводит плотность полностью кристаллического полипропилена 0,9360 г/см3. Для измерения плотности полимеров можно использовать флотационный метод. [29] или метод электромагнитного поплавка [30, 31]. Последний целесообразно применять в случае волокнистых материалов, так как на поверхности волокон образуются воздушные пузырьки.[2, С.70]

ИЗМЕРЕНИЯ ПЛОТНОСТИ (ДЕНСИТОМЕТРИЯ)[6, С.143]

Измерения плотности (денситометрия)[6, С.145]

Измерения плотности (денситометрия) 147[6, С.147]

Измерения плотности позволяют рассчитать степень кристалличности (хс) двух видов: весовую степень кристалличности (wc) и объемную степень кристалличности (vc).[6, С.147]

Однако измерения плотности единичных кристаллов показали, что их степень кристалличности не 100%, а лишь 60— 80% в зависимости от условий кристаллизации (Fischer, см. [53]). На этом основании было введено понятие об «аморфной составляющей» единичных кристаллов, что само по себе звучит несколько парадоксально. Тем не менее, ввиду недостаточно высокой концентрации дефектов внутри кристаллов, наличие которых могло бы объяснить дефицит кристалличности, пришлось допустить существование аморфного слоя, сосредоточенного в поверхностных областях ламелей.[11, С.43]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
2. Амброж И.N. Полипропилен, 1967, 317 с.
3. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
4. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
5. Бартенев Г.М. Физика полимеров, 1990, 433 с.
6. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
9. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
10. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
11. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
12. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
13. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
14. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
17. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 4, 1959, 298 с.
21. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
22. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
23. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную