На главную

Статья по теме: Обусловлено снижением

Предметная область: полимеры, синтетические волокна, каучук, резина

Повышение разветвленное.™ за стет увеличения размеров боковых заместителей приводит к снижению температуропроводности аморфных полимеров Например, коэффициент а снижается в ряду виничовых полимеров полиэтилен поливинилхло-рид полистирол или в ряду диеновых полибутадиен — поли-нзопрен — полихлоронрен Это обусловлено снижением теп юпроводности с увеличением массы звена цепи за счет боковых групп[3, С.364]

В работе [43] было выполнено комплексное исследование влияния степени ориентации полимерных цепей, оцениваемой по коэффициенту двойного лучепреломления Ал, на электрическую проводимость, подвижность иона МОГ и коэффициент диффузии молекул азота для пленок полистирола при 300 К, т. е. в стеклообразном состоянии. Уменьшение проводимости примерно на порядок с ростом An до 1-10-2 обусловлено снижением подвижности ионов. Коэффициент диффузии молекул азота уменьшается примерно так же. Характерно, что ориентационная вытяжка полимеров не приводит к изменению энергии активации электрической проводимости, подвижности ионов и диффузии нейтральных низкомолекулярных веществ. Следовательно, уменьшение у, х и D при ориентационной вытяжке полимера вызвано, очевидно, снижением энтропии ионов и молекул.[8, С.63]

Сведения о электрической прочности полимеров при сверхнизких температурах представляют практический интерес в связи с расширением применения полимерной изоляции в криогенной технике. В ряде работ [113,114] отмечено возрастание ё?пр полиэтилена, полипропилена, фторопласта-4 и других полимеров при достижении криогенных температур (рис. 71). Однако отмеченное увеличение пр вероятнее всего обусловлено снижением разрушающего действия частичных разрядов при переходе[8, С.132]

Согласно современным представлениям, изменение изобарного изотермического потенциала растворителя в системе полимер—растворитель является мерой сродства указанных компонентов друг к другу [8]. Как и следовало ожидать, прививка полиакриловой кислоты к полистиролу вызвала уменьшение сродства полученной системы к бензолу по сравнению с исходным ПС (см. рис. 4). Это уменьшение значения AZlf как показывает определение интегральных теплот набухания привитого сополимера (см. рис. 1), обусловлено снижением положительного теплового эффекта с 4,8 кал/г полимера для исходного полистирола до 3,6 кал!г для привитого сополимера. Следовательно, снижение отрицательной величины энергетической составляющей изобарного потенциала на 1,2 кал!г полимера приводит к тому, что привитой сополимер лишь ограниченно набухает в бензоле. Но значение положительного теплового эффекта Q = 3,6 кал/г полимера еще недостаточно для того, чтобы привитой сополимер имел высокий предел набухания (со2 = 0,5). Учитывая данные рис. 1, можно сказать, что дальнейшее увеличение процента привитой полиакриловой кислоты приведет к получению привитого сополимера, имеющего очень не-[10, С.272]

Улучшение диспергируемости частиц двуокиси титана при покрытии их жирными кислотами, вероятно, связано главным образом с повышением смачиваемости поверхности частиц органической средой. В дополнение к этому в стабилизацию дисперсий вносит определенный вклад «энтропийное отталкивание». Идея объяснения стабилизации дисперсий эффектом «энтропийного отталкивания» принадлежит Мэкору [6]. Она была распространена на низкомолекулярные углеводороды с помощью использования простой модели палочкообразных молекул [6, 7]. Поскольку «энтропийное отталкивание» обусловлено снижением конфигурационной энтропии адсорбированных цепей, находящихся между соударяющимися частицами, эффект должен быть значительно большим пди использовании полимеров по сравнению с низкомолекулярными соединениями. Статистическая обработка данных по влиянию адсорбированных полимеров на стабилизацию дисперсий была ранее выполнена Майером [11]. Идея стабилизации дисперсий адсорбированными полимерными молекулами была высказана также Хеллером и Пафом [5]. По их предположениям, присутствие адсорбированных макромолекул[9, С.313]

В начале процесса созревания (участок кривой АВ) вязкость вискозы резко уменьшается. Это обусловлено уменьшением степени структурирования и степени агрегации частиц (сохраняющихся остатков элементов надмолекулярной структуры), десольватацией (дегидратацией) растворенных частиц вследствие снижения степени замещения ксантогената, а также изменением формы частиц (уменьшением степени их асимметрии вследствие частичного удаления ионизирующихся групп соли), поскольку ксантогенат целлюлозы является полиэлектролитом. После достижения минимального значения вязкости (точка В) степень замещения продолжает уменьшаться, процесс десольватации поэтому продолжается, но вязкость медленно возрастает. Это обусловлено снижением растворимости ксантогената, что приводит к агрегации частиц и увеличению степени структурирования раствора (участок ВС). В определенный момент кривая вязкости круто поднимается вверх (участок CD), что указывает на приближение начала гелеобразования (точка D). У геля уже отсутствует текучесть и сетчатая структура геля в отличие от концентрированного раствора устойчива. При дальнейшем выдерживании образовавшегося геля про-[5, С.592]

Повышение пластичности обусловлено 'Снижением (Молекулярной массы каучуков в процессе деструкции. На рис. 34 и 35 показано изменение пластичности натурального и синтетического каучуков во времени {235]. Форма кривых напоминает «перевернутые» графики M=f(t), приводимые выше. Темп нарасталия пластичности, по-видимому, зависит от природы каучука, причем натуральный каучук пластицируется быстрее синтетических. Это объясняется не только различием сил межмолекулярного взаимодействия, но и соотношением энергии свободных мавдрорадикалов, которые образуются при мехалокрекинге каучуков.[7, С.85]

жении и сопротивления тепловому старению резин. Уменьшение содержания серы в эвтектической композиции (рецепт 2) приводит к резкому возрастанию сопротивления тепловому старению камерной резины, что обусловлено снижением степени сульфидности поперечных связей.[6, С.171]

продвижения реакционной массы по реактору значения Mw и 7 убывают, а значения КЦР, ДЦР и ВН возрастают, причем наибольшие изменения характеристик полимера происходят на тех участках реактора, где скорость реакции полимеризации максимальна. Некоторое уменьшение относительного содержания структурных элементов в начале второй зоны реактора обусловлено снижением концентрации полимера на этом участке за счет разбавления этиленом, вводимым в эту зону.[2, С.102]

политетрагидрофурана молекулярной массы от 500 до 6000 (коэффициент полидисперсности близок к 1,1) и из смеси фракций определенного состава с коэффициентом полидисперсности от 1,08 до 3,78 (молекулярная масса около 1000) [51]. С ростом молекулярной массы политетрагидрофурана (970—5360) наблюдается закономерное смещение температуры минимума эластичности в направлении отрицательных температур, что обусловлено снижением концентрации полярных и особенно ароматических групп в молекулярной цепи. Высокая эластичность полимера с молекулярной массой полимердиола 5360 связана с резко выраженной склонностью его кристаллизоваться. В области температур, соответствующих кристаллическому состоянию, значение условно-равновесного модуля достигает 50,0 МПа, в то же время выше температуры плавления значение модуля падает до 1,0 МПа.[1, С.540]

основном обусловлено снижением[4, С.140]

Полный текст статьи здесь

Решение задач по химии любой сложности. Для студентов-заочников готовые решения задач из методичек Шимановича И.Л. 1983, 1987, 1998, 2001, 2003, 2004 годов.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
7. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
8. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
9. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
10. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.

На главную