На главную

Статья по теме: Полиэфиров полиамидов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полимера: молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в «плохом» растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.).[1, С.159]

Процессы поликонденсации широко используются для производства различных классов полимеров (фенолоальдегидных, аминоальдегидных, полиэфиров, полиамидов и др.).[2, С.53]

Этот метод обычно применяют для исследования фракций полимеров с молекулярным весом не более 15 000—20 000. Исключение составляют полимеры, концевые звенья которых содержат радиоактивные атомы. Приборы для определения количества радиоактивных атомов настолько точны, что величину молекулярного веса можно установить и при малом отношении количества концевых групп к общему количеству звеньев полимера. Методом определения количества концевых групп может быть вычислен молекулярный вес полиэфиров, полиамидов, а также молекулярный вес полимеров винильных соединений (по количеству остатков инициатора в макромолекулах, если при полимеризации не происходит передача цепи и хорошо известна кинетика реакции).[3, С.84]

В гетероцепных полимерах вращение происходит вокруг связей С — О, С — N, Si— О, С — С и т. д. Потенциальные барьеры вращения вокруг этих связей невелики, поэтому цепные молекулы полиэфиров, полиамидов, силиконовых куачуков, полиуретанов, поли-эпоксидов должны быть очень гибкими. Но их гибкость может быть ограничена сильным межмолекулярным взаимодействием, особенно в тех случаях, когда между звеньями соседних цепей возникают прочные водородные связи (см. рис. 12}, например у полиамидов. При образовании прочных межмолекулярных связей ограничивается подвижность не только тех звеньев, которые участвуют в образовании этих связей, но и звеньев, примыкающих к ним, т. е. уменьшается гибкость цепи. Так, цепи полиамидов отличаются значительно меньшей гибкостью, чем цепи полиэтилена. ", Одним из наиболее жестких гетероцепных высокомолекулярных соединений является целлюлоза, в которой содержится большое число групп ОН, способных к образованию водородных связей, Для макромолекул^ целлюлозы характерно значительное внутри-и межмолекулярпое взаимодействие и высокий потенциальный барьер вращения.[4, С.91]

Во всех этих случаях могут образовываться левые и прав] спирали, несмотря на то, что в этих цепях отсутствуют асимм трические атомы углерода в обычном понимании этого термик Б цепях многих других полимеров, образующих оптически акти ные вещества, имеются асимметрические атомы углерода, напр мер, у полиэфиров, полиамидов, полиуретанов;[4, С.96]

При замене сложноэфиршх группировок в скелете макромолекулу па амндцьте группы гибкость цепи уменьшается н резко возрастает энергия когезии, что приводит к сильному повышению ТШ1 полиамидов по сравнению с температурами плавления полиэфиров. Температуры плаплекия полиуретанов, в кепи которых присутствуют и амидные и эфирные группы, лежат между температурами плавления полиэфиров и полиамидов.[4, С.141]

В ряду полиэфиров, полиамидов, полиуретанов наблюдается .хорошо известная из органической химии закономерность — различие в температурах плавления соединений с четным и нечетным числом атомов углерода. Эта закономерность проявляется уже в ряду нормальных парафинов. С увеличением, молекулярного веса парафиновых углеводородом температуры плавления их возрастают, асимптотически приближаясь к некоторому предельному значению. При этом кривая для углеводородов с четным числом атомов углерода проходит выше, чем для углеводородов с нечетным числом атомов углерода, Разность температ>р между кривыми составляет несколько градусов, по резко возрастает для молекул, имеющих па обоих концах массивные группы, способные к: образованию прочных межмодекулярпьа связей, например, группы СООН. Так, в ряду низших днкарбоцовых кислот температуры плавления умецьша* ются с увеличением молекулярного веса, при этом разность температур плавления между соседними членами гомологического ряда составляет 50 град, я она тем .меньше, чем больше тлело групп СН2. Соединения с четным числом атомов углерода плавятся при более высоких температурах, чем с нечетным. Например, щавелевая кислота плавится при 189,5, малоповая — при 133, янтарная— ПРИ 153; глутаровая — при 97,5, пимелнновая — при 105° С и т, д«[4, С.141]

В гетероцепных полимерах вращение происходит вокруг связей С—О, С—N, Si—О, С—С и т. д. Потенциальные барьеры вращения вокруг этих связей невелики, поэтому цепные молекулы полиэфиров, полиамидов, силиконовых куачуков, полиуретанов, поли-эпоксидов должны быть очень гибкими. Но их гибкость может быть ограничена сильным межмолекулярным взаимодействием, особенно в тех случаях, когда между звеньями соседних цепей возникают прочные водородные связи (см. рис. 12), например у полиамидов. При образовании прочных межмолекулярных связей Ограничивается подвижность не только тех звеньев, которые участвуют в образовании этих связей, но и звеньев, примыкающих к ним, т. е. уменьшается гибкость цепи. Так, цепи полиамидов отличаются значительно меньшей гибкостью, чем цепи полиэтилена. ', Одним из наиболее жестких гетероцепных высокомолекулярных соединений является целлюлоза, в которой содержится большое число групп ОН, способных к образованию водородных связей. Для макромолекулы целлюлозы характерно значительное внутри-и межмолекулярное взаимодействие и высокий потенциальный барьер вращения.[6, С.91]

Во всех этих случаях могут образовываться левые и правые спирали, несмотря на то, что в этих цепях отсутствуют асимметрические атомы углерода в обычном понимании этого термина. В цепях многих других полимеров, образующих оптически активные вещества, имеются асимметрические атомы углерода, например, у полиэфиров, полиамидов, полиуретанов;[6, С.96]

При замене сложноэфиршх группировок в скелете макромолекулы па амидпые группы гибкость цепи уменьшается н резко возрастает энергия когезии, что приводит к сильному повышению ТШ1 полиамидов по сравнению с температурами плавления полиэфиров- Температуры плавления полиуретанов, в цепи которых присутствуют и амидные и эфирные группы, лежат между температурами плавления полиэфиров и полиамидов.[6, С.141]

В ряду полиэфиров, полиамидов, полиуретанов наблюдается хорошо известная из органической химии закономерность — различие в температурах плавления соединений с четным и нечетным числом атомов углерода. Эта закономерность проявляется уже в ряду нормальных парафинов. С увеличением молекулярного веса парафиновых углеводородов *'""мов "в'1кислоте"'"" температуры плавления их возрастают, асимптотически приближаясь к некоторому предельному значению. При этом кривая для углеводородов с четным числом атомов углерода проходит выше, чем для углеводородов с нечетным числом атомов углерода. Разность температ>р между кривыми составляет несколько градусов, по резко возрастает Для молекул, имеющих па обоих коняах массивные группы, способные к образованию прочных межмолекулярньтх связей, например, группы СООН. Так, в ряду низших днкарбоцовых: кислот температуры плавления уменьшаются с увеличением молекулярного веса, при этом разность температур плавления между соседними членами гомологического ряда составляет 50 град, и она тем меньше, чем больше число групп СН2. Соединения с четным числом атомов углерода плавятся при более высоких температурах, чем с нечетным. Например, щавеле-Вая кислота плавится при 189,5, малоновая —при 133, янтарная— при 153; глутаровая —при 97,5, пимелиновая —при 105° С и т. д.[6, С.141]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
8. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
9. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
10. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
12. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную