На главную

Статья по теме: Полимеров находящихся

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для полимеров, находящихся в высокоэластическом состоянии, сохраняется ближний порядок во взаимном расположении сегментов макромолекул, но подвижность их существенно выше, нежели в стеклообразном состоянии: время релаксации сокращается на 5-6 десятичных порядков. Модуль упругости полимерных тел, находящихся в высокоэластическом состоянии, снижается до 0,1-0,3 Мпа. Существенно изменяется и сжимаемость полимера. Если в стеклообразном состоянии она для различных волокнообразующих полимеров заключена в пределах (]-^5)10~12 Па'1, то в результате расстекловывания полимерного субстрата сжимаемость возрастает до (3-г6)10~10 Па"1.[1, С.138]

Рис. 4.12. Оценка действующего объема по зависимости 1пг)5ф = Дт) для полимеров, находящихся в вязкотекучем состоянии в переходной области (а) и[1, С.185]

Ответ. Уменьшение эффективной вязкости полимеров, находящихся в вяз-котекучем состоянии, при повышении температуры происходит тем интенсивнее, чем более жестки макромолекулы. Для реализации элементарного акта течения (сдвига, перескока сегмента из одного равновесного состояния в другое) требуется затратить тем больше энергии, чем больше действующий объем сегмента. Этим определяется близкая к прямой пропорциональности зависимость АЕр = f (/-к), где /-к- длина сегмента Куна.[1, С.192]

Растворами полимеров, находящихся в стадии резола, пропитывают различные наполнители (порошкообразные и волокнистые материалы, бумагу, ткани, древесный шпон)". После удаления растворителя получают полуфабрикат].! (пресспорошки,, во-локниты, гетинакс, текстолит, древесные слоистые пластики), из которых формуют детали приборов и машин, крупногабаритные изделия (кузовы автомобилей и судов, трубы, аппараты для химических производств). В процессе формования в горячих формах (130—180°) под давлением 100-300 кг,см- происходит и уплотнение массы и превращение полимера в резит. Подбирая соответствующие наполнители, можно повысить прочность изделия при растяжении до 2500 кг 1см", удельную ударную вязкость —до 60—70 кг-см 1см-.[2, С.379]

Для всех поликарбамидных полимеров, находящихся в термостабильном состоянии, характерно некоторое набухание в воде. Наименьшей гидрсфильностью обладают меламино-формальдегид-ные и эфирометилолмочевинные полимеры, наибольшей—мочеви-но-формальдегидные. В термостабильном состоянии все карбамид-ные полимеры, за исключением эфирометилолмочевинных, весьма хрупки.[2, С.435]

Складчатая конформация типична для кристаллических областей; статистический клубок типичен для аморфных полимеров, находящихся в жидком, высокоэластическом (каучукоподобном) или твердом (жесткие клубки) состоянии.[3, С.39]

Ввиду того, что низко- и высокомолекулярные соединения в жидком состоянии резко отличаются по своему строению, различаются и механизмы их вязкого течения. Это легко видеть из наблюдений за зависимостью энергии активации И вязкого течения полимерных растворов или расплавов от молекулярной массы: U возрастает с молекулярной массой и достигает некоторой предельной величины. В случае парафиновой цепочки этот предел составляет 25 — 29 кДж/моль, для каучуков 14 кДж/моль и расплавов твердых карбоцепных полимеров 84 — 125 кДж/моль. Относительно низкие значения энергий активации у пелимеров свидетельствуют о том, что статистически независимая кинетическая единица течения — тот же сегмент цепи, включающий" в себя несколько десятков углеродных атомов хребта цепи, который является основным релаксатором и в высокоэластическом состоянии. Вязкость системы прямым образом зависит от числа сегментов, входящих в цепь. Соответственно, механизм вязкого течения полимеров заключается в перемещении цепей друг относительно друга путем перехода отдельных сегментов из одного равновесного положения в другое в результате теплового движения. Строго говоря, этот механизм течения справедлив для умеренно концентрированных растворов, а для полимеров, находящихся в более конденсированном состоянии, механизм течения более сложен.[4, С.168]

Особенности физических свойств полимеров, находящихся в ориентированном состоянии, связаны с их специфической анизотропной структурой. При деформировании полимеров происходит изменение конформаций цепных макромолекул, их взаимного расположения, а также изменение различных форм надмолекулярной организации. Эти изменения структуры полимеров при их деформировании обусловлены тем, что ее элементы ориентируются в направлении действия сил. Вследствие наличия малых и больших структурных элементов возможны как ориентация макромолекул в целом, так и их частей. Чтобы ориентировать части цепных макромолекул, необходимо не только повернуть их, но и переместить, так как все они связаны в цепи, локально собранные в микроблоки, и могут поворачиваться только при одновременном перемещении других частей. Скорости этих двух процессов ориентации резко различны, поэтому при действии ориентирующих сил прежде всего развивается ориентация участков цепей, а затем и ориентация цепных макромолекул в целом. Однако в соответствии с правилом стрелки действия (см. рис. II. 2) можно, варьируя скорость и температуру растяжения, сделать доминирующим лишь один процесс ориентации, в частности добиться «одноактного» распрямления всех цепей [22].[4, С.184]

В процессе эксперимента снимают температурные зависимости проницаемости е' и потерь tg б при разных частотах (например, 50 Гц, 10 кГц, 1 МГц...). По этим данным для разных температур строят частотные зависимости е' и tg б. Если d0/d « 1 и Т0/Т л; 1, то-коэффициент &т можно не учитывать. Условие do/d « 1 справедливо практически всегда, поэтому изменением плотности полимеров, находящихся в электрических полях, обычно пренебрегают. На практике в самом деле То/Т » 1, ибо Т0 обычно выбирают равной комнатной (20 °С), а Т берут близкой к ней,;, затем вычерчивают зависимости приведенной проницаемости епр от приведенной частоты lg v при разных температурах. График кривой е„р = / (lg v) при температуре приведения переносят на прозрачную бумагу. Далее приведение производят перемещением кривых параллельно оси lg v до совпадения их с обобщенной кривой, которая в диапазоне приведения остается неизменной. Для кривых при температуре приведения Т0 и температуре Т характерна определенная разность температур (Т—Т0) и разность частот Igvi — lgv=lg&T. Величина lg 6Т определяет смещение каждой кривей е'т вдоль оси Igv до кривой при температуре приведения Т0. При этом нужно учитывать знаки lg йт: если смещение происходит вправо, то lgbr>0; если влево — отрицателен. Аналогично строят зависимости 8пр = е'пр (lg V)*.[4, С.242]

Из данных о независимости энергии активации от длины полимерной цепи следует, что статистически независимой кинетической единицей процесса течения является некоторый среднестатистический отрезок цепной молекулы, называемый сегментом и включающий в себя несколько десятков углеродных атомов в цепи. Вязкость полимера зависит от числа сегментов, входящих в цепь, т. е. от длины цепной молекулы. Следовательно, механизм вязкого течения полимеров заключается в перемещении цепей друг относительно друга путем перемещения отдельных сегментов из одного равновесного положения в другое в результате теплового движения. Строго говоря, этот механизм течения имеет место для неконцентрированных растворов, а для полимеров, находящихся в конденсированном состоянии, механизм течения более сложен. В отсутствие внешних сил перемещения сегментов происходят по всем направлениям пространства. Наличие внешней силы приводит к перераспределению направлений перемещений сегментов таким образом, что число их в направлении действия силы возрастает, а в противоположном — уменьшается (это явление может быть названо вынужденной диффузией сегментов).[5, С.147]

Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердом агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов: импульсный и широких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров.[5, С.231]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
7. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
8. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
9. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
10. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
11. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
12. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
13. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
14. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
15. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
16. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
17. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
18. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
19. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
20. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
21. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
22. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
23. Северс Э.Т. Реология полимеров, 1966, 199 с.
24. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
25. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
26. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
27. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
28. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
29. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
30. Виноградов Г.В. Реология полимеров, 1977, 440 с.
31. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
32. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
33. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
34. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
35. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
36. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
37. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
38. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
39. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
40. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
41. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
42. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
43. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
44. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
45. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
46. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
47. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную