На главную

Статья по теме: Полимеров температура

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для многих полимеров температура начала интенсивной деструкции действительно лежит выше температуры стеклования или плавления. Однако в ряде случаев деструкция начинается и при температурах, лежащих ниже температуры стеклования или плавления. Последнее обусловлено тем, что устойчивость химической связи сильно зависит от диполь-дипольных взаимодействий и водородных связей. Рассмотрим это более подробно.[5, С.224]

У линейных полимеров температура стеклования зависит от молекулярной массы, увеличиваясь с ее ростом. Когда же молекулярная масса полимера достигает значения, при котором начинает проявляться гибкость макромолекул, Тс принимает неизменное значение. У пространственных полимеров сшивание макромолекул и образование сетчатой структуры приводят к повышению Тс, тем большему, чем гуще пространственная сетка.[12, С.24]

Для неплавких полимеров температура начала разложения является предельной температурой, выше которой происходят скачкообразные изменения свойств; теплостойкость полимеров, которые размягчаются при температуре, ниже температуры разложения, характеризуется температурой размягчения. Это температура, при которой реализуется заданная деформация прессованных или литых стандартных брусков из исследуемого материала. Общепринятыми унифицированными методами являются определение теплостойкости по Вика и по Мартенсу, а также "температуры допустимой деформации", "деформационной теплостойкости", "температуры нулевой прочности".[8, С.391]

В случае аморфных полимеров температура и интервал плавления* зависят от молекулярно-массового распределения и степени разветвленное™ исследуемого полимера. Зависимость температуры текучести от молекулярной массы можно наблюдать для олигомеров в пределах одного гомологического ряда, например для полиоксиметилендиметилового эфира [95], для олигомер-ных полиамидов и полиэфиров [96], [97].[11, С.89]

Получаемые из каучуков различные резиновые изделия эксплуатируются в высокоэластичсском состоянии. Для Этих полимеров температура стеклования или кристаллизации в ряде случаев является нижним температурным пределом их работоспособности и определяет морозостойкость таких материалов Ниже этой температуры полимер находится в твердом состоянии и непригоден для употребления. Следовательно, для каучуков температура стеклования или кристаллизации должна быть как можно более низкой-Температура стеклования современных высококачественных каучуков. так называемых морозостойких, лежит в области от — 70 до — 90° С. Каучуки с температурой стеклования от —20 до —40° С относятся к неморозостокким.[4, С.151]

Однако, как уже отмечалось (см. 5.3.1), у кристаллических полимеров в отличие от низкомолекулярных кристаллов плавление происходит не при определенной температурной точке, а в некотором интервале температур. Под Тт понимают среднюю температуру этого интервала. Кроме того, у полимеров температура плавления и температура обратного фазового перехода из аморфного (высокоэластического релаксационного состояния) в кристаллическое состояние-температура кристаллизации (Гкр) -не одинаковы, причем Тт > Ткр (средней температуры интервала кристаллизации). С увеличением Ткр интервал температуры плавления сужается. Все это связано с явлениями релаксации. Таким образом, у однофазного кристаллического полимера существуют три температурных характеристики: Ткр < Т„л < Гт . Температура плавления, как и Гс, зависит от энергии межмолекулярного взаимодействия (энергии когезии) и от способности макромолекул к конформационным превращениям (гибкости цепей); Тпл тем выше, чем больше энергия когезии и меньше гибкость макромолекул. В каждом конкретном случае Гщ, определяется соотношением двух величин: энергии когезии и потенциального барьера внутреннего вращения.[9, С.152]

Ниже определенной температуры аморфный полимер может рассматриваться как твердое стекло. Если его нагреть выше этой температуры, то отдельные сегменты макромолекулы приобретают большую подвижность, полимер становится мягким и, наконец, переходит в высокоэластическое состояние*. Температуру, при которой происходит это изменение, называют температурой стеклования Тё. Эта температура зависит от химической природы полимера, стереохимического строения его цепи, от степени разветвлен-пости макромолекул. Для одного и того же образца Tg может быть различной в зависимости от метода ее определения [90]. Температуру стеклования можно определить путем исследования некоторых физических характеристик полимерного образца, таких, как показатель преломления, модуль упругости, диэлектрическая проницаемость, теплоемкость, коэффициент набухания, удельный объем, в зависимости от температуры. При достижении температуры стеклования эти величины или их температурный ход резко меняются. У аморфных полимеров температура размягчения часто совпадает с температурой стеклования; у кристаллических полимеров точка плавления существенно выше, чем Tg. Температуру стеклования кристаллических полимеров можно оценить по эмпирическому правилу Бойера — Бимана: Тк составляет примерно две трети температуры плавления (в градусах Кельвина)**.[11, С.87]

Температура осаждения - температура, при которой становится возможным визуальное определение мутности растворов полимеров.[1, С.406]

Температура размягчения полимеров - температура, при которой в процессе нагревания резко возрастает деформируемость образца под влиянием заданной нагрузки.[1, С.406]

Замена этиленгликоля высшими гомологами нормальных гли-колей приводит к образованию линейных кристаллизующихся полимеров, температура плавления и твердость которых убывают[2, С.424]

Температура стеклования Тс многих статистических сополимеров хорошо описывается экспериментальной формулой вида[3, С.49]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
7. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
11. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
12. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
13. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
14. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
15. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
16. Пашин Ю.А. Фторопласты, 1978, 233 с.
17. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
18. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
19. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
20. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
21. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
22. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
23. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
24. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
25. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
26. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.

На главную