На главную

Статья по теме: Пространственных полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Нерастворимость пространственных полимеров затрудняет изучение их состава и взаимного расположения атомов и групп. Обычно применяют косвенные методы исследований, в большинстве случаев заключающиеся в сопоставлении свойств полимеров со свойствами низкомолекулярных модельных соединений.[1, С.37]

Особое поведение пространственных полимеров отмечается и в жидких средах, воздействующих на структуры, с которыми они соприкасаются. Так, если среда вызывает набухание трехмерной решетки, то как следствие развиваются критические напряжения, приводящие к разрыву валентных и межмолекулярных связей и появлению фрагментов больших размеров.[12, С.51]

Полимераналогичные превращения сетчатых и пространственных полимеров сопровождаются еще большим количеством разнообразных побочных реакций, однако детально проследить структурные изменения нерастворимых полимеров пока не представляется возможным.[1, С.176]

На оснсвании изучения низксмолекулярных модельных систем устанавливают примерное строение пространственных полимеров, взаимное расположение звеньев цепи и функциональных групп, входящих в состав этих высокомолекулярных соединений. Наряду с этим определяют некоторые физические и механические свойства пространственных полимеров: температуру деструкции, диэлектрические свойства, степень набухания в различных растворителях, химическую стойкость, прочностные показатели. Этими дгигь'ми (Скчно страничивгются при исследовании полимеров пространственной структуры.[1, С.37]

Трехмерные полимеры называются пространственными (рис. \,д). Классическим примером регулярно-построенных пространственных полимеров являются алмаз и кварц.[2, С.29]

Полимеры, получаемые на основе бифункциональных соединений, термопластичны. Применение трифункциональных исходных веществ приводит к образованию пространственных полимеров, неплавких и нерастворимых. Разветвленные термореактивные по-лиорганосилоксаны получают гидролизом смеси би- и трифункциональных соединений, например диметилдихлорсилана и метил-трихлорсилана. Для получения термореактивных полиметилсилок-санов отношение R : Si < 2. При этом получаются твердые очень хрупкие материалы. Повышение отношения R:Si снижает их хрупкость, но повышает температуру и длительность отверждения. Таким образом, изменяя соотношение между би- и трифунк-циональными силанами, можно регулировать частоту сшивки полимеров.[6, С.245]

Переход от линейных полимеров к пространственным сопровождается резким увеличением молекулярной массы, и в пределе полимер может быть превращен в одну гигантскую макромолекулу. Процесс образования пространственных полимеров сопровождается потерей растворимости и способности плавиться, а также изменением всех физико-кимических свойств полимера.[2, С.219]

Пространственное строение имеют, по-видимому, и многие другие неорганические высокомолекулярные соединения. Из органических природных полимеров к пространственным высокомолекулярным соединениям относится шерсть. Известно большое число синтетических пространственных полимеров.[2, С.29]

Вследствие того, что отдельные макромолекулярные цепи пространственного полимера соединены атомами или группами атомов, такой полимер не является совокупностью макромолекул. Его можно рассматривать как единую систему, в которой все атомы соединены между собой ковалентными связями. Такая своеобразная структура определяет ряд характерных свойств пространственных полимеров. Эти полимеры нерастворимы, что объясняется отсутствием в них межмолекулярных пространств, в[1, С.36]

Использование олигомеров для синтеза полимеров значительно расширило возможности синтетической химии высокомолекулярных соединений. На основе олигомеров получают блок-сополимеры, в которых удается сочетать гибкие и жесткие, гидрофильные и гидрофобные, кар-боцепные и гетероцепные полимеры. Очень важным направлением синтетической химии высокомолекулярных соединений является синтез пространственных полимеров на основе олигомеров.[2, С.58]

Прямым синтезом не всегда удается получить полимер пространственного строения. Поэтому синтезируют сначала линейный полимер, а затем из него получают пространственный. При этом можно регулировать частоту сетки и соответственно свойства конечного продукта. Примером такого двухстадийного синтеза пространственного полимера является получение резины (вулканизация каучука). Часто для синтеза пространственных полимеров используют олигомеры. Переход от линейного полимера к пространственному происходит иногда самопроизвольно (при хранении или эксплуатации полимера или изделий из него) в результате взаимодействия функциональных групп полимера друг с другом, с различными примесями или с кислородом воздуха.[2, С.220]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
10. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
11. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
12. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
13. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
14. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
18. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную