На главную

Статья по теме: Интенсивной деструкции

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для многих полимеров температура начала интенсивной деструкции действительно лежит выше температуры стеклования или плавления. Однако в ряде случаев деструкция начинается и при температурах, лежащих ниже температуры стеклования или плавления. Последнее обусловлено тем, что устойчивость химической связи сильно зависит от диполь-дипольных взаимодействий и водородных связей. Рассмотрим это более подробно.[2, С.224]

При температуре переработки полипропилена ( — 250° С) эффективность антиоксидантов очень низка. При температурах выше 270° С степень деструкции полипропилена уже не зависит от содержания стабилизаторов. Избежать интенсивной деструкции при температуре переработки можно путем снижения общего содержания кислорода в перерабатывающей машине.[1, С.171]

С оговоркой, что в точках, где имеет место скачок (разрыв) каких-то параметров (в случае температуры плавления •—это-действительно фазовый переход первого рода, в случае стеклования — разрыв в коэффициенте объемного расширения, в случае температуры начала интенсивной деструкции — потеря устойчивости химических связей), мы будем использовать изложенную модель ангармонического осциллятора для описания соответствующих критических температур, а также для оценки физических параметров (например, энергии связи) полимеров-(эти параметры можно найти из экспериментов с низкомолекулярными веществами).[4, С.29]

Исследованиями молекулярной структуры было показано, ч го минимальная температура расплава волокнообразующего полимера должна составлять 210° С, потому что только при этой или более высокой температуре разрушаются центры кристаллизации изотактического полипропилена, благодаря чему существенно улучшается качество невытянутого волокна. Максимальная же температура расплава определяется молекулярным весом исходного полимера. Желательно, чтобы она не превышала 240° С, так как при этом еще не происходит интенсивной деструкции полимера.[1, С.241]

Одной из важнейших характеристик, определяющих способность полимера к экструзии пленок и листов, является величина вязкости расплава. Согласно реологическим закономерностям течения расплавленного полипропилена через узкую щель мундштука, вязкость расплава должна быть возможно более низкой, в особенности при производстве тонких пленок. Снижение вязкости расплава полимера может быть достигнуто повышением температуры переработки, уменьшением молекулярного веса, увеличением содержания атактической фракции или, наконец, применением термостойких смазочных веществ. Предельная температура расплава составляет около 300° С [71]. Выше этой температуры полимер уже подвергается интенсивной деструкции. С повышением содержания атактической фракции снижаются механические[1, С.261]

Прядильные экструзионные машины во многих отношениях бесспорно лучше, чем прядильные головки, оснащенные плавильными решетками. В первую очередь следует отметить их большую производительность, которая пропорциональна диаметру червяка. Благодаря тому, что высоковязкий расплав полимера подается к прядильному насосику не самотеком (как в прядильном устройстве с плавильной решеткой), а принудительно с помощью червяка, переработку можно осуществлять при более низких температурах. По той же причине продолжительность пребывания расплава полимера в прядильной экструзионной машине сокращается настолько, что даже в относительно жестких температурных условиях экструзии и последующего формования волокна из расплава интенсивной деструкции не наблюдается. Наконец, принудительная подача расплава к насосу обеспечивает эффективную гомогенизацию расплава как по составу, так и по температуре; благодаря достаточному давлению воздух в зоне сжатия вытесняется обратно к бункеру машины, так что устраняется необходимость формования волокна в токе инертного газа.[1, С.239]

Как было отмечено выше, подход для оценки физических свойств полимеров, рассматриваемый в данной монографии, является полуэмпирическим. В случае оценки термических характеристик полимеров, таких как температура стеклования, температура плавления, предполагается, что повторяющееся звено построено из набора ангармонических осцилляторов, представляющих собой пары атомов, связанных межмолекулярными физическими связями. Критическая температура такого набора ангармонических осцилляторов и определяет упомянутые выше две температуры переходов. К этим характеристикам тесно примыкает коэффициент термического расширения. В случае такой характеристики, как температура начала интенсивной термической деструкции, звено полимера рассматривается в виде набора ангармонических осцилляторов, связанных химическими связями. Критическая температура такого набора осцилляторов характеризует температуру начала интенсивной термической деструкции при заданной скорости нагрева (естественно, что при другой скорости нагревания температура начала интенсивной деструкции изменится, т.е. кинетические эффекты здесь играют существенную роль). На первый взгляд может показаться странным, что процесс термической деструкции здесь рассматривается не как кинетический, что общепринято, а как своеобразный фазовый переход, при котором, однако, из продуктов термического распада нельзя снова получить исходное вещество простым охлаждением.[2, С.12]

Формула для расчета температуры начала интенсивной деструкции по-шетилиденфталида, полученное на основе (181), имеет вид[2, С.225]

Подобное взаимное влияние компонентов на свойства смеси и условия механокрекинга каждого из них довольно сложно и зависит от целого ряда факторов: соотношения компонентов, прочности цепей, их совместимости и т. д. Так [437], полиметилметакри-лат в смеси с натуральным каучуком почти не подвергается крекингу при одновременной интенсивной деструкции каучука, хотя по соотношению физических состояний обоих компонентов следова-[3, С.183]

:т изменяться в очень широких пределах при наличии моно-, ди и ульфидных мостиков. Максимальная температура размягчения (присут-ют только моносульфидные связи), совпадающая в этом случае с темперой интенсивной деструкции, составляет 400 °С; минимальная величина -10 °С характерна для сетки, содержащей только трисульфидные мостики. Можно представить также случаи, когда серные мостики могут имеет раз-гую длину и в реальной системе имеется определенное распределение по яам. Такие варианты были рассмотрены в работе [105], где температура лования эбонитов рассчитывалась как зависящая от функции распределено длинам поперечных мостиков, построенных из атомов серы. В резуль-; был сделан вывод о том, что в мостиках не может содержаться большое ячество атомов серы, и утверждение в литературе о том, что мостики обра-шы преимущественно дисульфидными цепочками, справедливо.[2, С.201]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Амброж И.N. Полипропилен, 1967, 317 с.
2. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
3. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
4. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.

На главную