На главную

Статья по теме: Поверхность субстрата

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Жидкий адгезив, наносимый на поверхность субстрата, должен равномерно и плотно покрыть ее. Однако при этой операции многочисленные трещины, поры и бороздки микрорельефа остаются заполненными воздухом, удаление которого происходит в основном за счет термодинамических явлений на поверхности (смачивания и капиллярных сил) и тормозится вязкостью (или в общем случае консистенцией) жидкости.[1, С.84]

Процессы, протекающие при нанесении жидкого адгезива на поверхность субстрата, заключаются, разумеется, не только в капиллярных явлениях — смачивании и растекании. Формирование адгезионного соединения сопровождается постепенным испарением растворителя, переходом слоя адгезива из жидкого в вязкотекучее, затем — в высокоэластическое и наконец в стеклообразное состояние. Все эти стадии превращения жидкого адгезива в пленку клеевого слоя играют в технологии склеивания большую роль. После частичного удаления растворителя при открытой выдержке поверхности, покрытой жидким адгезивом, производят склеивание. Система подложка — клей — подложка должна обладать способностью оказывать сопротивление внешним механическим воздействиям, хотя отверждение клеевого слоя еще не закончилось [13, с. 328]. Вязкость жидкого адгезива и кинетику процессов его высыхания регулируют, применяя соответствующие комбинации растворителей. Эти вопросы пока решаются эмпирическим путем и не являются, как и вообще вопросы рецептур, предметом нашего анализа. Заметим только, что образование слоя[2, С.121]

Своеобразные явления наблюдаются при нанесении жидких адгезивов на поверхность субстрата с помощью кисти или других приспособлений, создающих высокие скорости сдвига [13]. При высоких скоростях сдвига вязкость растворов полимеров может существенно снижаться. Например, вязкость 18%-ного раствора полистирола в декалине [70] снижается с 25 П при малых скоростях сдвига до 5 П при скоростях сдвига порядка 10"* с"1. При нанесении кистью слоя адгезива толщиной 50 мкм скорость сдвига наносимого слоя [13] может составить 10~4 с"1 при скорости движения кисти 50 см-с"1. Понижение эффективной вязкости адгезива при нанесении его кистью способствует образованию равномерного слоя, а восстановление высокой вязкости после снятия напряжения уменьшает стекание и образование наплывов [13]. Особенно велика роль этого фактора при использовании полимерных лаков, красок и покрытий [13].[2, С.120]

Полимер, используемый как адгезив (как в растворе, так и в расплаве) должен прежде всего хорошо и равномерно смачивать поверхность субстрата и быть настолько поверхностно-активным, чтобы вытеснять с поверхности адсорбированные ранее загрязнения, газы, жидкости. /[1, С.94]

При использовании цементного клея для уменьшения различия в значениях деформации адгезива и субстрата и уменьшения вызванного этим различия напряжений поверхность субстрата (например, бетона) тщательно смачивают водой [7, с. 14, 15]. При достаточном насыщении водой старый бетон набухает, происходит более согласованное изменение объемов адгезива и субстрата. В новом бетоне релаксация напряжений за счет ползучести происходит тем полнее, чем медленнее он твердеет. Замедляя твердение нового бетона, можно повысить прочность сцепле-[2, С.10]

Практические рекомендации, вытекающие из анализа приведенного выше материала с позиций молекулярной теории адгезии, сводятся к следующему. Для направленного воздействия на адгезионную прочность необходимо, во-первых, выбрать оптимальный тип адгезива для данного субстрата и заданных условий эксплуатации адгезионного соединения; во-вторых, подготовить поверхность субстрата к нанесению адгезива; в-третьих, выбрать оптимальные условия формирования адгезионного соединения. Наконец, часто приходится выбирать оптимальную форму и размеры адгезионного соединения, допустимые пределы нагруже-ния, т. е. решать вопросы, связанные с механикой адгезионного соединения. Подготовка поверхности субстрата включает, естественно, не только ее очистку, но зачастую и модификацию, причем модификация может заключаться в окислении поверхности для повышения ее полярности, в прививке на поверхность соответствующих мономеров, в обработке поверхностно-активными веществами и т. д. Выбор оптимального адгезива для данного субстрата также может быть решен по-разному: изменением дозировки компонентов с активными функциональными группами, введением специальных добавок (с учетом особенности применяемого субстрата), введением в адгезив пластификаторов, подбором растворителя и т. д. Кроме того, выбирая оптимальный тип адгезива, следует постоянно иметь в виду когезионную прочность адгезива. Часто достижение интенсивного взаимодействия адгезива с субстратом и создание возможно более прочного адгезива достигаются компромиссным путем, так как эти проблемы оказываются трудно совместимыми. -[2, С.364]

В качестве наполнителей эластомеров и пластмасс иногда при-меняют минеральные вещества: белую сажу, аэросил, кварцевый песок, стеклянный порошок, каолин, тальк, бентонит, слюду. Наличие гидроксильных групп на поверхности перечисленных субстратов определяет особенности процессов, протекающих на границе раздела. Необходимо напомнить, что связь Si—О в перечисленных минералах сильно поляризована. Поэтому взаимодействие полимеров с данными субстратами нельзя объяснить только реакциями функциональных групп. Мы уже отмечали это выше и считаем необходимым подчеркнуть опять, что поверхность субстрата может оказаться активной даже и по отношению к инерт-[2, С.346]

Технология склеивания. При склеивании жидкими Ф.-а.к. древесины и пластмасс клей наносят кистью на склеиваемую поверхность, выдерживают обычно 5—15 мин для удаления растворителя, затем производят сборку деталей и, спустя нок-рое время (для клеев холодного отверждения не более 15—20 мин), отверждают. В зависимости от вязкости клея при склеивании деталей создается давление 0,05—0,5 Мн/м2 (0,5—5,0 кгс/см'2), а при изготовлении фанеры —1,5— 2,0 Мн/м2 (15—20 кгс/см2). Расход клея составляет 150—200 г/ж2 (клеи холодного отверждения) и 100— 125 г!м- (клеи горячего отверждения). Пленочные клеи укладывают на поверхность субстрата и, т. к. клей не содержит растворителя, сразу же осуществляют сборку деталей, а затем склеивание (отверждение). Перед склеиванием поверхности древесины и пено-пластов не подвергают дополнительной обработке и обезжириванию. Поверхности прессованных пластиков и стеклотекстолитов обрабатывают наждачной бумагой. При склеивании с помощью Ф.-а. к. холодного отверждения, содержащих кислый катализатор, древесины, фанеры и пластмасс с металлами на поверхность последних во избежание коррозии и для повышения адгезии предварительно наносят подслой Ф.-а.к., модифицированного ацеталями (напр., клей БФ-2), который отверждают при 130 —140 °С в течение 30—60 мин. В производстве фанеры влажность шпона не должна превышать 10%.[3, С.353]

Технология склеивания. При склеивании жидкими Ф.-а.к. древесины и пластмасс клей наносят кистью на склеиваемую поверхность, выдерживают обычно 5—15 мин для удаления растворителя, затем производят сборку деталей и, спустя нек-рое время (для клеев холодного отверждения не более 15—20 мин), отверждают. В зависимости от вязкости клея при склеивании деталей создается давление 0,05—0,5 Мн1м? (0,5—5,0 кге/сл»2), а при изготовлении фанеры —1,5— 2,0 Мн/мг (15—20 кгс/смг). Расход клея составляет 150—200 г/л2 (клеи холодного отверждения) и 100— 125 г/jn2 (клеи горячего отверждения). Пленочные клеих укладывают на поверхность субстрата и, т. к. клей не содержит растворителя, сразу же осуществляют сборку деталей, а затем склеивание (отверждение). Перед склеиванием поверхности древесины и пено-пластов не подвергают дополнительной обработке и обезжириванию. Поверхности прессованных пластиков и стеклотекстолитов обрабатывают наждачной бумагой. При склеивании с помощью Ф.-а. к. холодного отверждения, содержащих кислый катализатор, древесины, фанеры и пластмасс с металлами на поверхность последних во избежание коррозии и для повышения адгезии предварительно наносят подслой Ф.-а.к., модифицированного ацеталями (напр., клей БФ-2), который отверждают при 130—140 °С в течение 30—60 мин. В производстве фанеры влажность шпона не должна превышать 10%.[4, С.353]

Имеется много методов модификации поверхности субстрата. Поверхность малоактивных субстратов, например таких, как полиэтилен, полипропилен, фторопласт, для повышения адгезии подвергают окислению [5—15, 64, 67], действию электрических разрядов [7—11, 16—26, 52—61, 68, 130, 133, 134], пламени [9— 11, 17, 19, 27, 66], ультрафиолетового света [7, 11, 28, 63, 137], газообразного хлора [7, 11, 29, 30], ионизирующего излучения [7, 8, 10, 31,32], а также действию некоторых других агентов [33—35, 62, 65, 131, 143, 144]. Природа процессов, протекающих при этих видах обработки, различна. Так, под действием галогенов, галогенводородов, органических галогенсодержащих соединений происходит прививка к поверхности субстрата, главным образом по двойным связям. Воздействие на поверхность субстрата электрического поля, ионизирующего излучения, ультрафиолетового света сопровождается деструкцией макромолекул, их окислением и образованием на поверхности функциональных групп, что можно обнаружить, например, по ИК-спектрам [5, 37—40]. Перечисленные методы модификации поверхности инертных субстратов — это по существу методы повышения поверхностной энергии. Напомним, что необходимым условием смачивания поверхности субстрата адгезивом является соблюдение неравенства[2, С.371]

Нанесение на поверхность субстрата адсорбционных слоев и применение поверхностно-активных веществ — также распространенные и достаточно эффективные методы воздействия на адгезию. При этом важно, чтобы адсорбат был способен[2, С.377]

нилась. Полиамидное моноволокно, обработанное этим адгезивом, по значению адгезии к резине практически не уступает (особенно по динамическим показателям) кордной нити (см. табл. IV.1). В данном случае влияние механического фактора фактически отсутствует. Система полиамидное моноволокно — адгезив на основе СКД-1 — резина обладает высокой выносливостью к многократным деформациям и разрушается по когезионному механизму (по резине) или по границе адгезив — резина (рис. IV.9, см. вклейку). Разрушения по границе адгезив — моноволокно, несмотря на гладкую поверхность субстрата, не происходит.[2, С.167]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
2. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
3. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
4. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную