На главную

Статья по теме: Пространственные структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Особенность фторсодержащих сополимеров ТФЭ в отличие от перфторсополимеров заключается в способности сополимеров образовывать пространственные структуры при нагревании и под воздействием ионизирующих излучений. Наибольшей стойкостью к ионизирующим излучениям обладает сополимер ТФЭ — Э. Исследованиями спектров ЭПР у-облученных ПВДФ, ПВФ и сополимеров ТФЭ —Э, ТФЭ —ВДФ и ТФЭ —ТрФЭ разного состава при различных температурах выявлено, что при наличии не менее двух соседних групп CF2 образуются только фторалкильные радикалы. Разрыв полимерной цепи наблюдается по месту возникновения «блоков» CF2-rpynn. При уоблучении в сополимере ТФЭ — Э появляются и алкильные[9, С.104]

Процесс, при котором жидкие (или используемые в виде расплавов или растворов) реакционноспособные олигомеры необратимо превращаются в твердые, нерастворимые и неплавкие пространственные структуры, называется отверждением. Этот термин используется обычно применительно к образованию трехмеров из смол, лаков, клеев, герметиков, компаундов.[3, С.114]

Кислород воздуха влияет на процессы, протекающие при облучении полимеров, что часто приводит к окислительной деструкции. Полимеры, легко образующие в отсутствие кислорода пространственные структуры, в присутствии кислорода деструктируются с выделением большого количества летучих веществ.[4, С.295]

Если плотность разветвления превышает некоторую критическую величину ркр в системе возникают частицы надмолекулярных, а затем и макроскопических размеров, представляющие собой трехмерные пространственные структуры [2]. С точки зрения обычных молекулярных представлений их молекулярные массы и размеры можно назвать бесконечно большими. Образование таких структур проявляется ъ резком скачкообразном увеличении вязкости системы при полимеризации в массе и в появлении геля в ^створах полимеров.[1, С.25]

Макромолекулярные реакции всегда приводят к изменению степени полимеризации, а иногда и строения основной цепи полимера К этим реакциям относятся реакции деструкции полимеров, сопровождающиеся уменьшением молекулярной массы, и межмолекулярные реакции, в результате которых образуются пространственные структуры и возрастает молекулярная масса полимера.[6, С.157]

Макромолекулярные реакции всегда приводят к изменению степени полимеризации, а иногда и строения основной цепи полимера. К этим реакциям относятся реакции деструкции полимеров, сопровождающиеся уменьшением молекулярной массы, и межмолекулярные реакции, в результате которых образуются пространственные структуры и резко возрастает молекулярная масса полимера.[4, С.211]

Этим условиям удовлетворяют эластомеры, полученные вулканизацией высокомолекулярных натурального и синтетических каучуков Часто высокоэластичностью обладают не только сшитые эластомеры, но и линейные высокомолекулярные полимеры, например невулканизованные каучуки В них тоже образуются пространственные структуры, однако поперечные связи между линейными макромолекулами каучуков непрочны, имеют временный характер являются лабильными, неустойчивыми.[6, С.251]

При исследовании полимеров следует учитывать, что под воздействием быстрых электронов в материале могут происходить изменения, приводящие к превращению кристаллического полимера в аморфный. При этом полимер деструктируется с образованием свободных макрорадикалов, в результате рекомбинации которых могут образовываться пространственные структуры, а кристаллическая структура полимера полностью или частично разрушается.[7, С.173]

Химические реакции. Как известно, химические превращения полимеров позволяют получать новые классы высокомолекулярных соединений на основе готовых макромолекул. В химии высокомолекулярных соединений различают реакции звеньев полимерной цепи и макромолекулярные реакции. Первые приводят к изменению химического состава полимера без изменения степени полимеризации. Такие реакции называют полимераналогичными превращениями или реакциями в цепях полимеров. Макромолекулярные реакции всегда приводят к изменению степени полимеризации, а иногда и строения основной цепи полимера. К ним относятся реакции деструкции и межмолекулярные реакции (сшивание), в результате которых образуются пространственные структуры. Сшивание может быть осуществлено как за счет реакций функциональных групп или двойных связей в звеньях различных макромолекул, так и путем обработки линейных полимеров низкомолекулярными веществами (сшивающими агентами).[3, С.112]

Полимеры, легко дающие пространственные структуры в отсутствие кислорода, при наличии его деструктурируются с выделением большого количества летучих веществ.[10, С.639]

Эти соединения при нагревании образуют пространственные структуры след, строения (пунктиром показаны «невидимые» в данной геометрич. фигуре связи):[14, С.481]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Пашин Ю.А. Фторопласты, 1978, 233 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
12. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
13. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную