На главную

Статья по теме: Скоростью распространения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При возбуждении в материале сдвиговых колебаний одновременно возникают продольные волны. Кроме того, при импульсном (ударном) возбуждении пьезопреобразователя его излучение не является монохроматичным даже при высокой добротности преобразователя. Интенсивность продольной «паразитной» волны возрастает по мере уменьшения собственной частоты колебаний пьезопреобразователя и появления низших гармоник. Это затрудняет регистрацию импульса, соответствующего прохождению чисто сдвиговой волны. Для подавления импульсов, связанных с прохождением воли растяжения — сжатия, обладающих большей скоростью распространения, чем сдвиговые, используют специальные ультразвуковые преобразователи и измерительные линии. Например, ультразвуковое устройство для возбуждения и приема сдвиговых волн разработано И. А. Зудовым (Институт механики по- , лимеров АН ЛатвССР). Принцип измерительной линии основан на использовании явления геометрической дисперсии при распространении продольных колебаний в цилиндрических стержнях. Явление геометрической дисперсии наблюдается при отношении диаметра стержня d к длине волны в пределах: d/K = 1,6 -ь 2,2. Для ослабления волн, являющихся высшими или низшими гармониками основной частоты и возникающих вследствие немонохроматичности импульса, поверхность буферного стержня делают ребристой с глубиной резьбы ~5 мм. Это позволяет подавить амплитуды продольных волн без существенного ослабления амплитуд сдвиговых колебаний.[1, С.39]

Для упрощения измерений и расчетов угол ф принимают равным 45°. Тогда в окончательном виде соотношения между скоростью распространения ультразвуковых колебаний и коэффициентами жесткости для ортотропных материалов могут быть записаны в виде, представленном в табл. 1 (расположение координатных осей показано на рис. 1.4).[1, С.43]

Для перехода от механизма разрастания микродефекта к обычно определяемым характеристикам прочности требуется установить зависимость между скоростью распространения разрыва и скоростью деформации образца в целом. Анализ результатов испытаний модельных вулканизатов методом скоростной киносъемки показал, что увеличение межмолекулярного взаимодействия при прочих равных условиях сопровождается уменьшением средней скорости роста разрыва [294, с. 4; 296, с. 973].[5, С.160]

Приведенный выше фактический материал убедительно свидетельствует о том, что разрушение — процесс, происходящий не мгновенно или развивающийся со скоростью распространения звука в разрушаемом теле, а с некоторой конечной скоростью, зависящей от свойств тела, температуры и разрушающего напряжения.[5, С.270]

Введение 'более жесткого компонента в систему приводит как к увеличению скорости распространения упругих волн, так и к увеличению k ПВА, несмотря на то, что разрушение не носит хрупкого характера; между k ПВА и скоростью распространения упругих волн наблюдается линейная зависимость (рис. 130).[3, С.150]

Установлено, что «серебро» возникает при 60 °С и напряжениях 125 кгс/см2 через 2 ч, а полное разрушение образцов наступает через 1700 ч. Таким образом, время с момента нагружения до появления видимых трещин составляет менее 1%, т. е. долговечность образца определяется в основном скоростью распространения трещин.[6, С.222]

Долговечность образца может резко отличаться при переходе от одного статического режима к другому. Так, например, при заданном растягивающем напряжении a=const упругая энергия образца при прорастании трещины пополняется за счет работы внешних сил. При этом упругая энергия подводится к трещине со скоростью распространения упругих волн в твердом теле. В те моменты, когда скорость роста трещины становится близкой к скорости распространения упругих волн, ускорение роста трещины прекращается и скорость роста достигает предельной (критической) величины. Следовательно, при режиме o=const начавшийся процесс разрушения ускоряется, а напряжение о' в еще неразрушенном сечении образца непрерывно возрастает по мере роста трещины.[4, С.31]

Измерения при однократном кратковременном нагру-жении классифицируются по скорости испытания. Здесь можно выделить низкоскоростные (^2 м/мин), средне-скоростные (^5 м/с) и высокоскоростные испытания (>5 м/с). Такая классификация находит свое естественное отражение и в конструкции испытательных машин. Верхняя граница скоростей, до которых обычно ведут изменения с регистрацией диаграммы напряжение — деформация, определяется скоростью распространения волн напряжений, при этом скорость воздействия должна быть несколько меньше, чем скорость распространения волн в материале. В этом случае в образце может установиться относительно равномерное поле напряжений и деформаций.[7, С.198]

Более совершенные методы расчета сил взаимодействия конденсированных тел были развиты Казимиром [21] и Лифши-цем [22]. В противоположность применявшемуся ранее «микроскопическому» подходу, основанному на рассмотрении взаимодействий молекул, был применен макроскопический подход, в котором взаимодействующие тела рассматривались как сплошные среды [22]. Основная идея заключается в том, что взаимодействие между телами осуществляется посредством флуктуационного электромагнитного поля, присутствующего внутри всякой материальной среды и выходящего за ее пределы. Такой подход обладает полной общностью и применим к любым телам независимо от их молекулярной природы [20]. В расчетах используются уравнения Максвелла, учитывающие упомянутые выше эффекты запаздывания, связанные с конечной скоростью распространения электромагнитных волн. Исходя из взаимодействия флуктуационных электромагнитных полей и вводя в уравнение Максвелла стороннее поле [24], можно показать [20—22], что сила притяжения обратно пропорциональна четвертой степени расстояния при больших расстояниях (порядка нескольких микрон). Когда расстояния между телами сокращаются до нескольких сотен А,[8, С.17]

Релаксационные явления и связанная с ними вынужденная эластическая деформация приводят к тому, что первичные трещины, образующиеся при растяжении органического стекла, раскрываются настолько широко (на 0,5 мкм и более), что удается наблюдать их возникновение и развитие непосредственно под микроскопом и даже невооруженным глазом. Эта особенность органических стекол и подобных им полимеров позволяет получить прямые доказательства неодновременности разрыва образца и подтверждение теории хрупкой прочности. В пользу этих представлений также говорят результаты исследования поверхности, 'образующейся при разрыве образца (поверхность разрыва), на которой хорошо видна линия встречи трещин. У полиметилмета-крилата эта линия представляет собой гиперболу, возникшую вследствие пересечения двух растущих с одинаковой скоростью трещин, одна из которых начала развиваться раньше другой. У полистирола кривые менее правильны, что, по-видимому, связано с неодинаковой скоростью распространения различных трещин или с зависимостью ее от времени. Иногда линии встречи трещин[2, С.419]

При рассмотрении сила возникающих в системе адгезив — субстрат, необходимо учитывать, что во взаимодействии участвуют не изолированные атомы или молекулы, а конденсированные фазы. Это обстоятельство коренным образом изменяет зависимость сил взаимодействия от расстояния. Первые попытки рассмотрения сил взаимодействия конденсированных фаз были предприняты Де Буром и Гамакером [16, 17]. Рассматривая взаимодействие двух шаров, шара с плоскостью, двух плоскостей, Гамакер подсчитал энергию взаимодействия как интеграл парных молекулярных взаимодействий по элементам объема этих тел, учитывая важнейшее свойство дисперсионных сил — их аддитивность. Оказалось, что в первом и во втором случае сила взаимодействия пропорциональна второй степени расстояния между объектами, а в третьем случае (плоскость — плоскость) — третьей степени. Однако при расчете дисперсионных сил на больших расстояниях необходимо учитывать эффект электромагнитного запаздывания, связанный со скоростью распространения электромагнитных волн [18]. С учетом этого эффекта показатель степени при г в расчетах Гамакера должен быть повышен на порядок [19]. Однако расчеты Гамакера и Кройта, основанные на суммировании энергии парных взаимодействий, недостаточно обоснованы теоре-тически и, строго говоря, применимы только для рассмотрения систем, состоящих из изолированных частиц, т. е. идеализирован-ного случая [20].[8, С.17]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
2. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
3. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
4. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
5. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
6. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
7. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
8. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
9. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
10. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
11. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную