На главную

Статья по теме: Состоянию соответствует

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Этому состоянию соответствует конформация статистического клубка при расстоянии между концами макромолекулы г2 = 2/зпЬ2 (п — число повторяющихся звеньев, Ь — длина одного звена) При растяжении число возможных конформаций уменьшается [1^(г)-»-0] и энтропия системы в растянутом состоянии становится меньше После снятия нагрузки система переходит[5, С.244]

На рис. 7.1 высокоэластическому состоянию соответствует область V, пластическому — область VI и вязкотекучему — область VII выше температуры Гт. Температурные границы этих областей зависят для данного полимера от временного режима испытания образцов и, как правило, с увеличением скорости деформации и уменьшением времени действия нагрузки смещаются в сторону высоких температур. Чисто высокоэластический разрыв полимера наблюдается только в области V, при более высоких температурах разрыв осложняется нелинейными деформационными эффектами — потерей при 0^ап устойчивости процесса деформации (образованием сужения) и вязким течением. Особенности деформации и разрыва полимера выше температуры Т„ скорее относятся к области реологии полимеров, чем к физике прочности. Поэтому в дальнейшем будет обсуждаться процесс разрушения в высокоэластическом состоянии ниже Т„ на примере несшитых и сшитых эластомеров.[8, С.219]

Модули накоп 1ения С' и потерь С" зависят от температуры и скорости деформирования (рис. 515). Гистсрезисные (С" и 1д 6) потер[( минимальны при высокой температуре и медленной деформации, т. е в условиях, когда перестройка структуры, успевает произойти за период деформирования, т. е т.*о><§;1 В ."этих условиях С невысок и равен равновесному модулю высоко эластичности. Потери минимальны также при низкой температуре и быстрой деформации, т. е. в условия когда проявляется упругая деформация Этому состоянию соответствует условие т*<л)3>1 к высокое значение С', характерное гля твердых полимерных тел Гистсрезисные потерн максимальны при промежуточных значениях температуры и ско-[5, С.296]

На рис. 1.15 приведены три типа термомеханических кривых. Кривые получены при нагревании с заданной скоростью нагруженного образца полимера. Действующая нагрузка должна быть неизменной (напряжение а = const) и малой по значению, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига. При низких температурах все полимеры деформируются так же, как и твердые тела. Если полимер не кристаллизуется, то деформация с температурой изменяется по кривой типа 1. Выше температуры стеклования Тс проявляется высокоэластическая деформация (плато высокоэластичности), а затем выше температуры текучести Гт реализуется вязкое течение с накоплением необратимой деформации. Кривая / свидетельствует о том, что полимер может находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Каждому состоянию соответствует свой тип деформации.[3, С.32]

Однако подход к стеклованию как к релаксационному процессу, являющийся в настоящее время общепринятым, не исключает и термодинамическую трактовку этого явления. Основанием для такой трактовки служит то, что многие признаки перехода полимера в стеклообразное состояние — излом на графике зависимости удельного объема от температуры, скачкообразное изменение теплоемкости— делают этот переход подобным так называемым термодинамическим (фазовым) переходам 2 рода. Поэтому в последнее время получает все большее распространение новая точка зрения на стеклование, сочетающая в себе и кинетический и термодинамический подход. Она состоит в том, что экспериментально наблюдаемое значение Тс является лишь некоторым приближением к температуре истинного фазового перехода Т2, который однако не может быть реализован за реально доступный промежуток времени. Согласно расчету Адама и Гибса, сделанному на молекулярной основе, Т2 лежит примерно на 60° ниже Тс и характеризуется тем, что конфигурационная энтропия цепей равна нулю, т. е. полностью прекращаются поворотные движения в цепях [8]. Этому состоянию соответствует бесконечно большая вязкость полимера, что в ранних работах служило количественным эмпирическим признаком стеклования.[1, С.43]

С каждым из физических состояний связан определенный комплекс физических свойств, и каждому состоянию соответствует[2, С.68]

Сферолитами обычно ограничивается структурообразование кристаллических полимеров. Поэтому кристаллическому фазовому состоянию соответствует, как правило, сферолитная сгрук-тура. Однако в особых условиях в кристаллических полимерах могут формироваться даже монокристаллы (например, в полиэтилене) .[6, С.33]

Твердому агрегатному состоянию полимеров соответствует два фазовых — кристаллическое и жидкое (аморфное). Жидкому фазовому состоянию соответствует два агрегатных—твердое (стеклообразное) и жидкое (расплав). Большинство распространенных промышленных полимеров (полистирол, поливинил-[6, С.22]

Кристаллические полимеры. Типичные термомеханические кривые для кристаллических полимеров представлены на рис. 1.7. Кривая 3 относится к полимеру, который плавится при температуре Тт и сразу переходит в вязкотекучее состояние, кривая 4— к полимеру, который после плавления переходит в каучукоподобное состояние (этому состоянию соответствует второй горизонтальный участок кривой). При охлаждении ниже температуры Т8 жесткость полимера плавно увеличивается. Этот температурный переход соответствует стеклованию аморфных областей, существующих в любом кристаллическом полимере. Чем меньше степень кристалличности полимера, тем большей деформации соответствует положение термомеханической кривой в области температур между Tg и Тт. Если расплав кристаллического полимера быстро охладить ниже температуры стеклования, то затем при нагреве выше температуры Те он сразу переходит в каучукоподобное[7, С.23]

В вязко-текучем, состоянии полимер представляет -еэбой жидкость и способен необратимо течь под воздействием сравнительно небольших внешних напряжений, т. е. проявлять пластическую деформацию. При течении происходит перемещение целых макромолекул относительно друг друга. Деформация в вязкотекучем состоянии может развиваться бесконечно и носит необратимый характер. Вязкотекучему состоянию соответствует участок III на рис. II. 5.[6, С.26]

При понижении температуры ниже Тс в полимере наблюдается дальнейшее уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Чтобы вызвать теперь даже небольшую деформацию за-стеклованного полимера, нужно приложить к нему большую механическую нагрузку. При этом действующее на полимер напряжение (нагрузка) может оказаться выше его разрушающего напряжения, и полимер разрушается как хрупкое тело при очень малой деформации. Температуру, при которой происходит хрупкое разрушение полимера, называют температурой хрупкости Тхр (см. рис. II. 5). Стеклообразному состоянию соответствует участок / на термомеханической кривой.[6, С.25]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
7. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
8. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
9. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.

На главную